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Abstract—In social media settings where users send messages
to one another, the issue of reciprocity naturally arises: does
the communication between two users take place only in one
direction, or is it reciprocated? In this paper we study the
problem of reciprocity prediction: given the characteristics of
two users, we wish to determine whether the communication
between them is reciprocated or not. We approach this problem
using decision trees and regression models to determine good
indicators of reciprocity. We extract a network based on directed
@-messages sent between users on Twitter, and identify measures
based on the attributes of nodes and their network neighborhoods
that can be used to construct good predictors of reciprocity.
Moreover, we find that reciprocity prediction forms interesting
contrasts with earlier network prediction tasks, including link
prediction, as well as the inference of strengths and signs of
network links.

I. INTRODUCTION

As social media applications gain richer sets of features,
they come to contain increasingly diverse connections among
their users. The microblogging site Twitter is one example
in which users share links to content, pass on messages,
and initiate messages with an intended target. These directed
messages, which we call @-messages, signal a communication
link between two users and can represent many different forms
of interaction. Indeed, earlier research has shown that Twitter
contains a large amount of social activity between users who
interact with each other as peers, as well as a large amount of
information-seeking and information-sharing activity in which
users interact with celebrities, news sources, and other types
of high-visibility accounts [1], [2].

A challenge when studying an environment such as Twitter
is that these types of connections are superimposed in a single
communication network. Therefore, it is important to develop
techniques capable of classifying the links in the underlying
network according to the different activities that they represent.
To this end, we formulate the problem of predicting link
reciprocity, and develop a set of techniques for this purpose.

Reciprocity captures a basic way in which different forms
of interaction on a site like Twitter take place. When two users
v and w interact as peers, one expects that @-messages will
be exchanged between them, passing in both directions — we
consider this to be a symmetric, or reciprocated, interaction.
On the other hand, if a user v sends multiple messages to a
celebrity or news source w, it is likely that w will not send
messages in return — this is an asymmetric, or unreciprocated

interaction. Which features characterize the difference between
reciprocated and unreciprocated relationships? Can we tell
them apart based on properties of the users involved, and prop-
erties of their network neighborhoods? Do the sub-networks of
reciprocated and unreciprocated links have different structural
properties? These are some of the questions we address in
this paper; our approach also addresses the broader issue of
isolating the different forms of interaction that take place on
a complex social media site such as Twitter.

A. Summary of Results

We pursue two main approaches to analyzing reciprocity.
The first is to study the problem of reciprocity prediction:
we formulate several variants of the problem, all of them
oriented around determining whether a link between users v
and w is reciprocated or unreciprocated; and we identify a
set of features based on the characteristics of v, w, and the
nodes connected to v or w. (The precise definitions for these
variants of the problem will be given in the next section.) Our
analysis extracts features that have strong predictive power
for this task. We find that differences in reciprocity can be
related to the notion of status. Roughly speaking, people with
similar status often participate in reciprocated interactions (e.g.
messages between friends), while those with disparate status
often participate in unreciprocated interactions (e.g. messages
from fans to celebrities). In particular, we find that measures
that formalize the relative “flow” of links from v to w,
compared with the corresponding flow from w to v, constitute
an important source of information for this task.

Our second approach involves comparing the structure of
two subgraphs, one consisting of just the reciprocated links and
the other consisting of just the unreciprocated links. We find
that these structures exhibit important differences, including
the presence of greater clustering and a larger giant component
in the subgraph of symmetric links. Moreover, we find that
almost all highly active Twitter users take part in at least some
reciprocated interactions, while a non-trivial fraction take part
in no unreciprocated interactions.

B. Related work

As noted above, several recent papers have discussed the
heterogeneity of relationship types on Twitter, although they
do not consider reciprocity as a measure [1], [2]. In the context
of email, Tyler and Tang considered the dynamics of replying



to messages, which is the analogue of reciprocation in that
domain [3]; however, the specifics of their analysis are quite
different from what we pursue here.

Predicting reciprocity is related to other prediction tasks
concerned with the links of an underlying network, but it
is different in several important respects. Specifically, the
link prediction problem seeks to identify links (v, w) that
are currently missing in a network snapshot but are likely
to form in the near future [4]. A key contrast between
reciprocity prediction and link prediction is that the formation
of any particular link is a rare event, whereas reciprocating an
existing link (v, w) with the reverse edge (w, v) is common
on sites such as Twitter. For this and other reasons, we find
that features that have been observed to work well for link
prediction are not the most effective for reciprocity prediction.

There has also been recent research predicting the strengths
[5] and the signs [6] of links in on-line social networks. These
works form interesting contrasts with reciprocity prediction. In
particular, it is possible for a strong directed tie to be either
reciprocated or unreciprocated. For example, an avid follower
of the New York Times might regularly generate messages
such as “@nytimes reports that ... ” without ever receiving a
message from the @nytimes Twitter account. In the problem of
sign prediction the notion of status is crucial [6], as it is in our
work; but there are important distinctions in that reciprocated
and unreciprocated links can easily exhibit either type of sign.

II. PROBLEM DEFINITION

We now formalize the problem of predicting link reciprocity.
The communication network is represented as a directed graph
G = (V,E), with an edge (v, w) indicating that v has sent
w at least one @-message. (In keeping with the focus on
communication activities, we use @-messages to define all the
networks in our analysis, rather than other relationships such as
v following w’s account.) The input to our prediction problem
is the graph G and a node pair {v, w}, where at least one of
the edges (v, w) or (w, v) is present in G; information about
all edges of G is provided, except that the presence or absence
of the two potential edges (v, w) and (w, v) has been hidden.
Our task is to predict the direction of edges between v and w,
and we note that this can be formalized in two distinct ways.
First, we consider a formulation in which we decide whether
a {v, w} relationship is symmetric (that is, both (v, w) and
(w, v) exist) or is asymmetric (only one of the directed (v, w),
(w, v) relationship exists). In the second formulation, we ask
whether the (w, v) edge is present given that the (v, w) edge
exists. Intuitively, predicting a symmetric relationship between
nodes is a more difficult task than predicting reciprocation in
a specific direction, and we show that this is indeed the case.

A. Notation

The number of messages produced by users on Twitter
exhibits a long-tail distribution – many users produce only
a small number of messages. In this work, we focus on users
who have produced a large number of @-messages, so that
we are studying a user population for whom Twitter is a

significant communication medium. We consider subgraphs
of the form Gn = (Vn, En), where Vn = {v | v ∈
V, v sent ≥ n @-messages} and En = {e = (v, w) | e ∈
E, v and w ∈ Vn}. This subgraph thus captures the @-
messaging interactions between individuals who are prolific
Twitter users. We use the notation v

k−→ w to indicate that v
sent at least k @-messages to w, and v

=k−−→ w to indicate
that v sent exactly k @-messages to w. From this definition
we can parametrize reciprocity in terms of k. We say that
an edge (v, w) is reciprocated if both v

k−→ w and w
k−→ v,

and is unreciprocated if v k−→ w and w =0−−→ v. Let the set of
reciprocated edges be denoted Er

k and the set of unreciprocated
edges be denoted Eu

k . Finally, let deg−(v) and deg+(v)
respectively denote the indegree and outdegree of node v,
msg−(v) and msg+(v) be the numbers of messages received
and sent by v, Γ−(v) = {w|(w, v) ∈ E} be the set of people
who sent messages to v, and Γ+(v) = {w|(v, w) ∈ E} be the
set of people to whom v sent messages.

B. Dataset description

We extracted the @-message graph from a large crawl of
Twitter that took place between August 2009 and January
2010. More than three-billion messages from over 60 million
users were collected in this data set [7]. The @-message graph
is constructed by looking at messages a user v authors which
mention user w at the beginning of the tweet. The graph
G of users who authored at least one @-message contains
12,795,683 distinct users who sent a total of 819,305,776 @-
messages, with 156,868,257 distinct directed interactions.

We focus our analysis on the subgraph G1000 induced by
users who authored at least 1000 @-messages. In G1000, which
includes 181,033 users, we find that |Er

10| = 797, 342 and
|Eu

10| = 349, 258

III. METHODS FOR RECIPROCITY PREDICTION

Intuitively, features that capture whether v and w have
similar status or a similar social circle should be potentially
useful in predicting reciprocation. This section presents the
various features that we use for predicting reciprocity in
networks. Each feature corresponds to a method that assigns
a value val(v, w) to a node pair (v, w), or a value val(v) to
a single node v. For each feature, we look at its value and
whether the edge in question is reciprocated; this data is used
for training models to predict reciprocity.

Given the values corresponding to all node pairs (or nodes)
in question, we can then choose threshold values or ranges
where we predict reciprocity, and predict a lack thereof in
the complementary region. We consider a simple threshold
classification scheme which predicts that a node pair (u, v)
is unreciprocated if the feature value is less than (or greater
than) some threshold, and is reciprocated otherwise. For
each feature, we determine the threshold value valOPT and
threshold direction (less than / greater than) to maximize
prediction accuracy according to this threshold classifier. For
example, a sufficiently high number of mutual neighbors for
the nodes v and w could strongly indicate the existence of



a reciprocated link between them. The list of features we
consider is summarized in Table I.

As previously mentioned, there are two ways that we can
formulate the prediction problem, and we present four different
formulations. The first addresses the question of symmetry,
while the other three examine the problem of reciprocity in
which the available information about the nodes in question
is limited:

1) SYM (predicting symmetry): predict whether both (v, w)
and (w, v) exist, or whether exactly one of (v, w) or
(w, v) exists, using information about v and w but not
about the presence or absence of communication between
them.

2) REV (predicting a reverse edge): predict whether a re-
verse edge exists given that the forward edge (v, w)
exists, using information about v and w.

3) REV-w (predicting a reverse edge using only w): predict
whether a reverse edge exists given that (v, w) exists, but
using only information about w.

4) REV-v (predicting a reverse edge using only v): predict
whether a reverse edge exists given that (v, w) exists, but
using only information about v.

Within this framework, we can compare the predictive
power of specific features of the @-message graph, as well as
more complex classifiers (such as decision trees) that utilize
multiple features.

A. Degree and message features

It seems intuitive that the relative indegree or outdegree of
nodes would indicate whether a pair of nodes are in a one-
sided or two-sided relationship. If both have a similar indegree,
this might indicate that they have similar social status in the
network. In contrast, disproportionate indegrees could indicate
that one user is a celebrity and the other is a non-celebrity,
making it less likely that their relationship is reciprocated.

We now describe the features in our analysis that are based
on degree and message counts. Both relative (e.g., the ratio of
indegrees) and absolute (e.g., deg−(w)) feature measures are
considered:
• Indegree and outdegree ratio both measure the ratio of

outdegrees or indegrees of two nodes, and we define
val(v, w) = deg−(v)/deg−(w) or deg+(v)/ deg+(w),
respectively.

• Incoming message and outgoing message ratio are simi-
lar, but uses the total number of messages that a node
receives or sends, regardless of the nodes to which
messages are sent or from which messages are received.
Specifically, we use the analogous measures discussed
above for degree, but with msg−(v) and msg+(v) playing
the roles of deg−(v) and deg+(v), respectively.

• Incoming message/indegree ratio and outgoing mes-
sage/outdegree ratio compares the ratio of two nodes’
incoming message to indegree ratio or outgoing message
to outdegree ratio. A high incoming message to indegree
ratio might characterize users who have a small group

of friends with which they exchange many messages.
Alternatively, a low incoming message to indegree ratio
could characterize highly connected people in a network,
since the messages they receive are distributed over many
more users.

• Outdegree/indegree ratio is a heuristic that characterizes
the messaging activity of a single node. A large out-
degree/indegree ratio might indicate a user of celebrity
status because she receives many messages from many
followers but sends relatively few messages. Given a pair
of nodes we can compute the outdegree/indegree ratio as
val(v, w) = deg+(v)

deg−(v)
/ deg+(w)

deg−(w)
.

B. Link prediction features

It is not intuitive whether methods that work well for link
prediction would work well in predicting reciprocity. While
link prediction asks whether an edge between two nodes exists,
reciprocity prediction asks whether a pair known to have at
least a directed edge in fact has a bi-directional pair of edges.
The following are some measures used for link prediction:

Newman [8] showed that the number of common neighbors
in a collaboration network can be a predictor of future links.

Mutual neighbors calculates the number of people to whom
both v and w send messages (|Γ+(v) ∩ Γ+(w)|), or the
number of people from whom both v and w receive messages
(|Γ−(v) ∩ Γ−(w)|).

Jaccard’s coefficient [9] is a similarity measure that we
apply to the concept of mutual neighbors. We calculate the
similarity between two sets by taking the ratio of the cardi-
nality of their intersection and their union:

val(v, w) =
|Γ−(v) ∩ Γ−(w)|
|Γ−(v) ∪ Γ−(w)|

.

Adamic and Adar [10] defined the similarity between Web
sites v, w to be

∑
{x|v,w share feature x}

1
log frequency(x) , and we

similarly define val(v, w) to be∑
{x|x∈Γ−(v)∩Γ−(w)}

1

log deg−(x)
.

Preferential attachment is another popular heuristic in mod-
eling network growth, where the probability that an edge forms
with a specific node is proportional to its existing indegree.
Newman [8] and Barabasi et al. [11] showed that the product
of the in-degrees of two nodes in a co-authorship network can
be a predictor of a future link between the nodes. We apply
preferential attachment in a slightly different way and define
val(v, w) = deg−(v) ·deg+(w) or deg+(v) ·deg−(w). Notice
that taking the ratio of these two values is equivalent to the
outdegree/indegree ratio between two nodes.

Two-step paths (ratio) is a simplification of Katz’s [12]
measure of status by calculating the number of paths between
two nodes. In this work, we only consider paths of length 2,
and define val(v, w) = |paths2(v, w)|, where paths2(v, w) is
the set of paths from v to w of length 2. The two-step paths
ratio is simply the ratio of the number of directed two-step
paths from v to w to that from w to v.



Fig. 1: Two-step hops

(a) 2-step (v to w)

v ? w

(b) 2-step (w to v)

v ? w

(c) Mutual (in)

v ? w

(d) Mutual (out)

v ? w

C. Different sets of features

The features above have been shown to work well for the
related but different task of predicting the existence of a link.
Since our task is to predict whether a link is reciprocated
we examine several additional features. For convenience, we
further break them down into four sets:

1) Absolute degree/message features - degree, messages,
message-degrees, outdegree-indegrees

2) Relative degree/message features - degree ratios, message
ratios, message-degree ratios, and outdegree-indegree ra-
tios

3) Two-step hop features - mutual neighbors (in and out),
and two step paths (v to w and w to v)

4) Link prediction features - all other link prediction features
not mentioned

D. Two-step paths

The importance of “friends of friends,” or people two links
away from a given node, lends itself to exploring features that
directly arise from the directed @-message graph. There are
essentially four types of two-step hops (shown in Figure 1)
corresponding to either the number of common in-neighbors
or out-neighbors (mutual neighbors), or the number of directed
paths from v to w or from w to v (two-step paths).

If both v and w send messages to many common people,
it is likely that they are in the same social circle, or that
they mention the same celebrities. If v and w receive many
messages from the same group of people, it could be that both
v and w are in the same community, or that they are celebrities
with overlapping fan-bases.

As the number of paths from v to w increases, there are two
conflicting forces: v has a stronger source of connections to w,
but at the same time w is more popular and hence less likely
to reciprocate the (v, w) edge. The reverse case is simpler—
intuitively, as the number of paths from w to v increases, the
likelihood that w will communicate with v grows.

IV. RESULTS AND DISCUSSION

A. Individual properties

To calculate the accuracy of the individual heuristics, we
calculated val for each feature on the subset Er

10 ∪ Eu
10 of

the graph G1000, where equal numbers of edges were taken
from the sets of reciprocated and unreciprocated edges. This
gives a baseline accuracy of 0.500, achievable by predicting
that all edges are of one type. We applied the SYM and REV

TABLE I: Reciprocity Prediction Features

Feature val(v) or val(v, w)

Absolute degree/message features

Indegree or outdegree deg−(v) or deg+(v)

Incoming or outgoing messages msg−(v) or msg+(v)

Message-degree (in or out) msg−(v)

deg−(v)
or msg+(v)

deg+(v)

Outdegree-indegree deg+(v)

deg−(v)

Relative degree/message features

Indegree ratio deg−(v)/ deg−(w)

Outdegree ratio deg+(v)/ deg+(w)

Incoming message ratio msg−(v)/msg−(w)

Outgoing message ratio msg+(v)/msg+(w)

Message-degree ratio (in) msg−(v)

deg−(v)
/

msg−(w)

deg−(w)

Message-degree ratio (out) msg+(v)

deg+(v)
/

msg+(w)

deg+(w)

Outdegree-indegree ratio deg+(v)

deg−(v)
/

deg+(w)

deg−(w)

Link prediction features

Mutual neighbors (in) |Γ−(v) ∩ Γ−(w)|
Mutual neighbors (out) |Γ+(v) ∩ Γ+(w)|

Jaccard’s coefficient (in) |Γ−(v)∩Γ−(w)|
|Γ−(v)∪Γ−(w)

Jaccard’s coefficient (out) |Γ+(v)∩Γ+(w)|
|Γ+(v)∪Γ+(w)

Adamic/Adar
∑
{x|x∈Γ−(v)∩Γ−(w)}

1
log deg−(x)

Preferential attachment (v to w) deg+(v) · deg−(w)

Preferential Attachment (w to v) deg+(w) · deg−(v)

Two-step paths (v to w) | paths2(v, w)|
Two-step paths (w to v) | paths2(w, v)|

Two-step paths ratio | paths2(v,w)|
| paths2(w,v)|

mechanisms to feature sets 2-4, and REV-v and REV-w to set
1.

As described earlier, we picked a threshold value valOPT

to optimize prediction accuracy: we predicted reciprocity
above the threshold, and non-reciprocity below (or vice versa
depending on which performed better). Tables III and IV
summarize the performance of each heuristic on the subgraph
G1000, k = 10, while table II summarizes the different mech-
anisms of prediction for a single heuristic.

In tables III and IV, a star (∗) indicates that reciprocity was
predicted when val was below the threshold, and a lack thereof
indicates reciprocity was predicted when val was above the
threshold.

In table II, SYM+ refers to the prediction mechanism where
we aim to predict symmetry and predict all edges with values
above valOPT to be reciprocated, and REV− refers to the
mechanism where we aim to predict whether a reverse edge
(w, v) exists given (v, w) and predict all edges with values
below valOPT to be reciprocated.

1) Comparison of prediction mechanisms: We observe
higher accuracy for the REV task than SYM, as REV is
“easier” than SYM since we know more information about
the edge (v, w).

Comparing REV-v to REV-w, we see REV-w obtains higher
accuracy, suggesting that when trying to predict the existence



(w, v) of given (v, w), knowing about properties of w is more
valuable than knowing properties of v.

Note that SYM−, REV−, REV−w+ and REV-v− are such
poor predictors that simply predicting that everything was
reciprocated (or unreciprocated) would have been better.

2) Comparison of methods of prediction:
a) Trends: On the whole, outdegree-indegree ratio and

the two-step paths ratio are the best indicators of reciprocity. In
fact, outdegree-indegree ratio alone already achieves accuracy
to within ±5% of a decision tree using every feature.

b) Sending and receiving: When we look at features
using one of the four mechanisms, we find that for the majority
of the features larger values indicate reciprocity is more
likely to occur. However, the smaller the outdegree-indegree
ratio, the more likely reciprocation occurs. In other words, a
large denominator and small numerator in deg+(v)

deg−(v)
/ deg+(w)

deg−(w)
=

deg+(v) deg−(w)
deg−(v) deg+(w)

is a good indicator of reciprocation. A large
denominator and small numerator indicate that v has many
in-links and few out-links and that w has many out-links and
few in-links. This suggests that v has higher “status” than w
and hence increases the probability that w links to v.

Interestingly, separating the numerator and denominator
from the outdegree-indegree ratio above, which corresponds
to our two preferential attachment features, leads to very
different results. While a small numerator does reasonably
well (preferential attachment (v to w)), a large denominator
does not (preferential attachment (w to v)) and performs
only marginally better than chance. It is reasonable that the
numerator and denominator would individually perform worse
than the ratio, since the ratio takes into account both of
them. However, the fact that the denominator performs so
poorly is surprising because a large denominator suggests
that v has a higher status than w; this could increase the
chance that w links to v even if w were to randomly link to
others. On the other hand, a small numerator provides some
information about status but not about increased reciprocation
under random linking. The fact that a small numerator is more
important than a large denominator suggests that status, as
measured by the number of in- and out-links, is a powerful
predictor of reciprocity.

If we consider only edges E= = {(v, w) | deg−(v) =
deg−(w)} (edges connecting nodes of equal degree), the
accuracy of the outdegree ratio feature increases to 0.811. This
result is comparable to what we get for the outdegree-indegree
ratio feature.

c) REV-v vs. REV-w: REV-w performs better than REV-
v on almost all features, and where REV-v performs better,
the difference is not as great. The fact that information about
w is more useful than information about v suggests a contrast
for various domains of potential application: for example, if
we think of v as sending information to w via the (v, w) com-
munication link (consider for example a marketer v contacting
a potential customer w), then we find that knowledge of the
recipient (w) tells us more about the probability of a response
than knowledge of the sender (v).

TABLE II: Indegree performance - different methods

Mechanism valOPT (Percentile) Accuracy
Indegree ratio

SYM+ 0.256 (40) 0.702
SYM− - -
REV+ 0.414 (46) 0.759
REV− - -

Indegree of v or w

REV-w+ - -
REV-w− 74 (61) 0.731
REV-v+ 61 (60) 0.582
REV-v− - -

TABLE III: Reciprocity Prediction Feature Performance: In-
dividual (REV)

Feature valOPT (Percentile) Accuracy
Indegree ratio 0.414 (46) 0.759

Outdegree ratio 0.667 (43) 0.628

Incoming message ratio 0.333 (48) 0.772
Outgoing message ratio 0.905 (46) 0.547

Incoming message-indegree ratio 0.650 (39) 0.569
Outgoing message-outdegree ratio 0.791 (33) 0.615*

Outdegree-indegree ratio 1.72 (53) 0.820*

Mutual neighbors (in) 10 (61) 0.552
Mutual neighbors (out) 8 (51) 0.580

Jaccard’s coefficient (in) 0.0345 (48) 0.684
Jaccard’s coefficient (out) 0.0637 (55) 0.660

Adamic/Adar 1.94 (55) 0.561

Two-step paths (v to w) 6 (59) 0.517*
Two-step paths (w to v) 5 (51) 0.657

Two-step paths ratio 0.556 (52) 0.760

Preferential attachment (v to w) 10230 (58) 0.687*
Preferential attachment (w to v) 2610 (37) 0.534*

TABLE IV: Reciprocity Prediction Feature Performance: In-
dividual (REV-v,REV-w)

Feature valOPT (Percentile) Accuracy
Indegree (v) 61 (60) 0.582
Indegree (w) 148 (61) 0.731*
Outdegree (v) 25 (14) 0.506*
Outdegree (w) 105 (60) 0.647*

Incoming messages (v) 619 (53) 0.637
Incoming messages (w) 1802 (54) 0.733*
Outgoing messages (v) 906 (51) 0.542
Outgoing messages (w) 506 (17) 0.524*

Incoming message-indegree (v) 9.4 (41) 0.596
Incoming message-indegree (w) 9.12 (30) 0.535
Outgoing message-outdegree (v) 13.2 (50) 0.523
Outgoing message-outdegree (w) 8.14 (36) 0.661

Outdegree-indegree (v) 1.28 (53) 0.679*
Outdegree-indegree (w) 0.747 (50) 0.777

B. Decision tree analysis
We can also combine subsets of features and evaluate their

performance by randomly splitting the edges in Er
10 ∪ Eu

10



TABLE V: Decision Tree Accuracy

Set Accuracy Top-level attribute

Degree/message (1) 0.832 Outdegree-indegree (w)
Degree/message ratio (2) 0.861 Outdegree-indegree ratio

Two-step hops (3) 0.796 Two-step paths (w to v)
Link prediction (4) 0.739 Two-step paths ratio (directed)

Combined

All ratio (2,3,4) 0.861 Outdegree-indegree ratio
All absolute (1,3,4) 0.832 Outdegree-indegree (w)

All (1-4) 0.862 Outdegree-indegree ratio

into two sets and performing 2-fold cross-validation. We use
the ID3 algorithm to train the decision tree classifiers, and
because the val features are continuous, we quantize each
feature into deciles (dividing the data equally into tenths) to
reduce computation time.

We consider the following combined sets of features, as well
as each set individually:

1) All (sets 1-4) – every single feature was considered.
2) All ratio (sets 2,3,4) – all features that used ratios were

considered.
3) All absolute (sets 1,3,4) – this allows us to see how using

only “absolute” features affects accuracy.

Table V shows the accuracy of the trees and the most
important attribute for the different sets of features. We find
that using only degree/message features (set 1) performs as
well as using all absolute features (sets 1, 3, 4). The two-
step paths ratio alone obtains an accuracy of 0.760, while
the decision tree for link prediction only manages 0.739. This
can be attributed to inaccuracies introduced while quantizing
the continuous features. Furthermore, features commonly used
for link prediction yield a tree of lower accuracy than other
features, providing evidence that the problem of reciprocity
prediction is different from link prediction. Whenever the
outdegree-indegree value or ratio was included in the feature
vector, it was the single most important variable.

If we only consider E=, node pairs with equal indegree
(|E=| = 16, 311), the accuracy of All ratio drops to 0.776.
This suggests that predicting reciprocity becomes considerably
more difficult as we lose the ability to differentiate between
nodes of different status or indegree. Again, as the indegrees
of v and w were equal in every pair (v, w), it is not surprising
that the outdegree ratio is the most important feature.

1) Performance: Classifying features based on their com-
putation time, the two-step hop and link prediction features
(excluding preferential attachment) take more than two orders
of magnitude longer to compute than all other features (500
times as long for k = 10). If we only use the other features
in prediction, we still obtain an accuracy of 0.862, similar to
what we obtained above when we used all features. Therefore,
it appears sufficient to use only these features in practical
applications.

2) Effect of k on accuracy: As k increases, the proportion
of edges that are defined as reciprocated increases, and natu-

TABLE VI: Logistic regression – relative degree/message-
based features

Feature β p value

Indegree ratio 0.0101903 < 2× 10−16

Outdegree ratio 0.0005775 0.2545
Incoming messages ratio 0.0230161 < 2× 10−16

Outgoing messages ratio -0.0047152 < 2× 10−16

Incoming messages-indegree ratio -0.0005545 0.0798
Outgoing messages-outdegree ratio -0.0049387 < 2× 10−16

Outdegree-indegree ratio -0.0562983 < 2× 10−16

TABLE VII: Logistic regression – two-step hop features

Feature β p value

Mutual neighbors (in) -0.0117269 < 2× 10−16

Mutual neighbors (out) 0.0180579 < 2× 10−16

Two-step paths (v to w) -0.1193624 < 2× 10−16

Two-step paths (w to v) 0.1296081 < 2× 10−16

TABLE VIII: Logistic regression – All ratio

Feature β p value

Indegree ratio 0.0120256 < 2× 10−16

Outdegree ratio -0.0015554 0.005739
Incoming messages ratio 0.0145437 < 2× 10−16

Outgoing messages ratio -0.0043189 < 2× 10−16

Incoming messages-indegree ratio 0.0048525 < 2× 10−16

Outgoing messages-outdegree ratio -0.0046674 < 2× 10−16

Outdegree-indegree ratio -0.0301592 < 2× 10−16

Mutual Neighbors (in) -0.0279290 < 2× 10−16

Mutual Neighbors (out) 0.0147103 < 2× 10−16

Two-step paths (v to w) -0.0530463 < 2× 10−16

Two-step paths (w to v) 0.0182572 < 2× 10−16

Two-step paths ratio 0.0394657 < 2× 10−16

Jaccard (in) -0.0238541 < 2× 10−16

Jaccard (out) 0.0572358 < 2× 10−16

Adamic-Adar -0.0001424 0.881637
Preferential attachment (v to w) 0.0010837 0.000627
Preferential attachment (w to v) - -

rally accuracy also increases (0.8818 for k = 20 and 0.9032
for k = 50). If we instead take equal numbers of reciprocated
and unreciprocated edges, giving a baseline accuracy of 0.500,
accuracy gradually increases from 0.836 for k = 10 to 0.846
for k = 30.

C. Regression analysis

We also used a logistic regression model on subsets of
features, where f(z) = ez

ez+1 , z = β0 + βF , f(z) is binary
(1 when an edge is reciprocated, 0 otherwise) and F is the
vector of features. The results are shown in tables VI—IX,
where struck-out p-values indicate insignificant features. Here,
the two-step paths (v to w), two-step paths ratio, and Jaccard
(out) features are most significant when simultaneously using
all features for classification.



TABLE IX: Logistic regression - All

Feature β p value

Indegree ratio 0.0041791 6.09× 10−8

Outdegree ratio 0.0046914 1.28× 10−13

Incoming messages ratio 0.0029794 0.000125
Outgoing messages ratio 0.0033361 3.10× 10−10

Incoming messages-indegree ratio 0.0040884 1.11× 10−14

Outgoing messages-outdegree ratio -0.0015075 0.006283
Outdegree-indegree ratio -0.0057958 < 2× 10−16

Indegree (v) 0.0050520 4.30× 10−11

Indegree (w) -0.0089197 < 2× 10−16

Outdegree (v) -0.0063247 < 2× 10−16

Outdegree (w) 0.0035881 3.58× 10−7

Incoming messages (v) 0.0063390 < 2× 10−16

Incoming messages (w) -0.0179975 < 2× 10−16

Outgoing messages (v) -0.0070869 < 2× 10−16

Outgoing messages (w) 0.0095572 < 2× 10−16

Incoming message-indegree (v) -0.0023250 1.11× 10−5

Incoming message-indegree (w) -0.0004044 0.42781
Outgoing message-outdegree (v) 0.0007430 0.175454
Outgoing message-outdegree (w) 0.0024155 2.54× 10−5

Outdegree-indegree (v) -0.0110324 < 2× 10−16

Outdegree-indegree (w) 0.0218874 < 2× 10−16

Mutual Neighbors (in) -0.0194635 < 2× 10−16

Mutual Neighbors (out) 0.0050245 < 2× 10−16

Two-step paths (v to w) -0.0462950 < 2× 10−16

Two-step paths (w to v) 0.0167156 < 2× 10−16

Two-step paths ratio 0.0440107 < 2× 10−16

Jaccard (in) -0.0398243 < 2× 10−16

Jaccard (out) 0.0561815 < 2× 10−16

Adamic-Adar 0.0111504 < 2× 10−16

Preferential attachment (v to w) 0.0009537 0.003002
Preferential attachment (w to v) - -

V. TWITTER AS A SUPERPOSITION OF NETWORKS

A. (Un)reciprocated subgraph analysis

We also analyze how various properties of the subgraphs
Gn, as well as the edge sets Er

k and Eu
k , vary as we adjust n

and k.
Reciprocated and unreciprocated edges: We observe that

the frequency of reciprocated edges is approximately 2 to
3 times that of unreciprocated edges, and the proportion of
reciprocated edges increases as n and k increases (Fig. 2, 3).
While reciprocated communication is the dominant form of
interaction, we also see a significant number of unreciprocated
interactions, indicating that a significant number of relation-
ships on Twitter are unbalanced. This could occur when a
user of lower status repeatedly invokes the name of a more
influential user (of higher status) through @-mentioning, as
suggested in the introduction.

Reciprocated and unreciprocated nodes: A significant
proportion of nodes take part in both reciprocated and un-
reciprocated interactions, and while a majority of nodes have
reciprocated interactions, only a small proportion have purely
unreciprocated interactions. This indicates that while there are
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Fig. 2: Proportion of nodes or edges (varying n)

two distinct types of relationships occurring on Twitter, they
do not correspond to two distinct types of users. The fact
that it is rare to find active Twitter users taking part in only
unreciprocated interactions suggests that social (reciprocal)
relationships are associated with an active and continued use
of the site.

We can also see this in a scatter plot of the number of
users v with each of three types of interaction (Fig. 6): (i)
reciprocated interactions with both (v, w) and (w, v) present;
(ii) unreciprocated “out-going” interactions with only (v, w)
present; and (iii) unreciprocated “in-coming” interactions with
only (w, v) present. We thus differentiate between both ends
in an unreciprocated edge (v k−→ w and w

=0−−→ v), where a
user could play the role of v if she’s not replied to, or the role
of w if she doesn’t reply. From the plot, we can see that the
types with the greatest numbers of associated nodes are those
with only reciprocated interactions.

Clustering coefficient remains relatively stable as n and k
vary: The clustering coefficient is much larger in the subgraph
of reciprocated edges, which corresponds to the natural notion
that reciprocated edges represent more social activity with
a larger density of triangles. The fact that these quantities
are stable as we change n and k suggests that the network
properties of these subgraphs do not change significantly even
if we sample from a relatively smaller population of all users
(Fig. 4).

Connected component remains stable as n varies, but
decreases as k increases: The graphs corresponding to Er

k

and Eu
k have giant components for relatively low values of

k. However, the size of the largest component shrinks rapidly
once k passes a particular range (roughly between 50 and
100). (Fig. 5). This hints at a kind of qualitative transition in
the structure of the network as a function of message volume,
with the edges representing more than 100 communications
each unable to sustain a very large component on their own.

VI. CONCLUSION

We have formulated several variants of the problem of
reciprocity prediction in an on-line social network and have
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Fig. 5: Proportion in largest connected component

demonstrated good predictive ability using properties of nodes
and their local network neighborhoods. In particular, features
that approximate the relative status of two nodes v and w
appear to be the most effective at predicting whether a link
between v and w is reciprocated. We have also studied the
subgraphs of reciprocated and unreciprocated links, finding
that they differ in important ways with respect to component
sizes and clustering.

There are a number of interesting further directions that
could pursued on this problem. First, our approach has used
structural features of the system, but it would be interesting
to combine these with other data such as textual content to
obtain stronger estimates of reciprocation. Second, temporal
information is another important source of data in analyzing
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Fig. 6: Scatter plot of users’ interaction types

reciprocation, and understanding how reciprocated and unre-
ciprocated interactions develop over time could provide further
insight into the problem. Finally, we should remember that link
reciprocity is one aspect of the broader issue of heterogeneity
in the types of interactions encountered on a site such as
Twitter; finding other dimensions along which to express this
heterogeneity is an important question as well.

ACKNOWLEDGMENT

This work was supported in part by a Google Research
Grant, a Yahoo! Research Alliance Grant, and NSF grants IIS-
0910664, CCF-0910940, and IIS-1016099.

REFERENCES

[1] H. Kwak, C. Lee, H. Park, and S. B. Moon, “What is Twitter, a social
network or a news media?” in Proc. 19th Intl. WWW Conf., 2010.

[2] D. M. Romero and J. M. Kleinberg, “The directed closure process in
hybrid social-information networks, with an analysis of link formation
on Twitter,” in Proc. 4th Intl. Conf. on Weblogs and Social Media, 2010.

[3] J. R. Tyler and J. C. Tang, “When Can I Expect an Email Response?
A Study of Rhythms in Email Usage,” in ECSCW’03: Proceedings of
the eighth conference on European Conference on Computer Supported
Cooperative Work. Kluwer Academic Publishers, Sep. 2003.

[4] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” Journal of the American Society for Information
Science and Technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[5] E. Gilbert and K. Karahalios, “Predicting tie strength with social
media,” in Proc. 27th ACM Conference on Human Factors in Computing
Systems, 2009, pp. 211–220.

[6] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Signed networks in
social media,” in Proc. 28th ACM Conference on Human Factors in
Computing Systems, 2010, pp. 1361–1370.

[7] D. M. Romero, B. Meeder, and J. Kleinberg, “Differences in the mechan-
ics of information diffusion across topics: Idioms, political hashtags, and
complex contagion on Twitter,” in Proc. 20th Intl. WWW Conf., 2011.

[8] M. E. J. Newman, “Clustering and preferential attachment in growing
networks,” Physical Review E, no. 2, pp. 025 102+, Jul. 2001.

[9] G. Salton and M. J. Mcgill, Introduction to Modern Information Re-
trieval. New York, NY, USA: McGraw-Hill, Inc., 1986.

[10] L. Adamic, “Friends and Neighbors on the Web,” Social Networks, 2003.
[11] A. Barabasi, H. Jeong, Z. Neda, E. Ravasz, A. Schubert, and T. Vicsek,

“Evolution of the social network of scientific collaborations,” Physica
A: Statistical Mechanics and its Applications, vol. 311, 2002.

[12] L. Katz, “A New Status Index Derived From Sociometric Analysis,”
Psychometrika, 1953.


