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ABSTRACT
Crowdsourcing systems lack effective measures of the effort
required to complete each task. Without knowing how much
time workers need to execute a task well, requesters struggle
to accurately structure and price their work. Objective mea-
sures of effort could better help workers identify tasks that
are worth their time. We propose a data-driven effort met-
ric, ETA (error-time area), that can be used to determine a
task’s fair price. It empirically models the relationship be-
tween time and error rate by manipulating the time that work-
ers have to complete a task. ETA reports the area under the
error-time curve as a continuous metric of worker effort. The
curve’s 10th percentile is also interpretable as the minimum
time most workers require to complete the task without er-
ror, which can be used to price the task. We validate the
ETA metric on ten common crowdsourcing tasks, including
tagging, transcription, and search, and find that ETA closely
tracks how workers would rank these tasks by effort. We
also demonstrate how ETA allows requesters to rapidly iter-
ate on task designs and measure whether the changes improve
worker efficiency. Our findings can facilitate the process of
designing, pricing, and allocating crowdsourcing tasks.
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ACM Classification Keywords
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INTRODUCTION
Imagine that a requester wants to use Amazon Mechanical
Turk to label 10,000 images with a fixed set of tags. How
much should workers be paid to label each image? Would la-
beling an image with twice as many tags result in a task that
is twice as much effort? Should the tags be provided in a drop
down list or with radio buttons? Answering these questions
requires a fine-grained understanding of the amount of effort
the task requires. This process today involves trial and er-
ror: requesters observe the wait time and quality on test tasks,
guess what might have been causing any problems, tweak the
task, and repeat. An accurate measure of the effort required
to complete a crowdsourced task would enable requesters to
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Figure 1. The ETA is defined as the area under the error-time curve.

compare different approaches to their tasks, iterate toward a
better design, and price their tasks objectively. It could also
help workers decide whether to accept a task, or even allow
systems to offer tasks based on difficulty or time availability.

However, despite its potential value, task effort is challenging
to estimate. Workers face cognitive biases in assessing diffi-
culty [21], while requesters cannot easily observe the process
and, as experts, categorically underestimate completion times
[12]. These limits suggest the need for a behavioral approach
to measure effort. One approach might be to let the market
identify hard tasks by reacting to the posted price [30]. How-
ever, prices cannot easily make fine distinctions in an inelas-
tic market such as Mechanical Turk [14]. Another approach
might be to use task duration as a signal of difficulty, but this
is unreliable because workers regularly accept multiple tasks
simultaneously and interleave work [29]. Measures such as
reaction time [32] are not easy to apply to typical crowd tasks:
reaction time metrics tend to use simplistic tasks (e.g., shape
or color recognition), while others may be too involved for
crowd work (e.g., [9]).

In this paper, we propose a data-driven behavioral measure
of effort that can be easily and cheaply calculated using the
crowd. Our metric, the error time area (ETA), draws on
cognitive psychology literature on speed-accuracy tradeoff
curves [32], and represents the effort required for a worker to
accurately complete a task. To create it, we first recruit work-
ers to complete the task under different time limits. Next, we
fit a curve to the collected data relating the error rate and time
limit (Figure 1). Last, we compute ETA by taking the area
under this error-time curve. Because ETA is calculated us-
ing a data-driven approach, task difficulty can be determined
with minimal effort and without analytical modeling. Rather
than measuring average duration independent of work qual-
ity, ETA computes quality as a function of duration and thus
can be used to estimate a wage for a task. ETA also allows
requesters to compare multiple task designs; for example, we
find that tagging an image with an open textbox is less effort
than choosing between a fixed list of 16 options, but more
effort than choosing between a fixed list of 8 options.
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After describing ETA, we explore the metric via four studies:

– Study 1: ETA vs. other measures of effort. For ten com-
mon microtasking primitives (e.g., multiple choice ques-
tions, long-form text entry), we show that the ETA metric
represents effort better than existing measures.

– Study 2: ETA vs. market price. We then compare ETA as
well as other measures to the market prices of these primi-
tives on a crowdsourcing platform.

– Study 3: Modeling perceptual costs. By augmenting ETA
with measures of perceptual effort, we find we can better
model a worker’s perceived difficulty of a task.

– Study 4: Tasks without ground truth. In order to capture
how well people do a task, ETA requires ground truth. We
extend the metric to also work for subjective tasks.

We then demonstrate how ETA can be used for rapidly pro-
totyping tasks. ETA makes it possible to characterize tasks in
terms of their monetary cost and human effort, and paves the
way for better task design, payment, and allocation.

RELATED WORK
Measures of task difficulty or mental workload can be roughly
separated into two categories: subjective and objective mea-
sures. Subjective measures include multidimensional work-
load assessment tools such as the NASA Task Load Index
(TLX) [10] and time estimates [5]. However, such measures
tend to be inaccurate and hard to capture. It is difficult for re-
questers to accurately estimate task difficulty, as experts cat-
egorically underestimate novices’ completion times and dif-
ficulty [12, 13]. Workers are also inaccurate; subjective met-
rics collected from workers tend to correlate poorly with each
other (e.g., between self-reported effort, self-reported diffi-
culty, and response time [7]), and workers exhibit large vari-
ance because they use different ranges of the rating scale [11].
Worker-driven subjective task judgments sometimes appear
on web sites such as Turkopticon and mTurk Grind. However,
these reviews are limited in number, lag the marketplace by
hours, and not available for all tasks. Our own experiments
reveal that many subjective metrics, while correlated with ef-
fort, are not directly interpretable and cannot differentiate be-
tween similar tasks.

Objective measures of effort include measuring reaction time
to a secondary stimulus [32] and dual task performance [33].
Physiological approaches include using EEGs [9], but these
approaches are relatively involved. The pricing of tasks on
Mechanical Turk can also provide a signal of the effort re-
quired for a task; survival analysis empirically models the
tradeoff between pricing and rate of completion [8], and mea-
sures of how long people work on tasks can characterize
a form of interface utility [30]. Still, completion rates are
dependent on time of day and the presence of other tasks,
and the equilibrium wage in crowdsourcing markets is low
and fairly inelastic [14]. Raw task duration is another po-
tential measure, but is a noisy signal as workers tend to
switch between tasks or ignore them for periods of time [29].
Accuracy-based measures are subject to ceiling effects, espe-
cially on relatively simple tasks typical of crowdsourcing, and
are not easily comparable across task types. We employ an

objective approach to measuring effort, extending research on
accuracy-tradeoff curves [32] to produce a more robust mea-
sure that correlates well with several subjective measures.

While our approach is data-driven, measures of effort do not
inherently require a task be completed to be calculated. Ma-
chine learning can be used to estimate the difficulty of a par-
ticular input and the quality of a worker for unobserved tasks
(e.g., [6]), but these approaches tend to be fairly complex
and require large-scale data collection. Further, they are task-
specific (e.g., multiple-choice questions [16]) and not easily
comparable across tasks. Our work requires limited data and
makes it possible to compare a large variety of tasks.

In addition to measuring the amount of overall effort a task
requires, the effort associated with a task can also be broken
down into components, for example, by separating its per-
ceptive (e.g., reading a question), cognitive (e.g., formulat-
ing the answer), and psychomotor (e.g., writing the answer
down) costs [25]. Borrowing from these models of workload,
we augment our approach to explore the perceptual load of
a task. We do not attempt to exactly differentiate between
these component costs, but our initial experiments suggest
there is value in accounting for these differences. In human
factors research, analytical models for usability evaluation
(e.g., ACT-R [3]) have been developed to characterize low-
level processes for computer-based tasks, and can be used to
predict mental workload. However, these methods require
substantial training or metadata annotation to execute, which
make them infeasible for many requesters. Rather than model
the effort required for a task by analyzing its specific makeup,
crowdsourcing allows us to do so by quickly getting workers
to perform tasks and observing how they perform.

ETA: A MEASURE OF TASK EFFORT
To quantify the amount of effort a task requires for high-
quality results, we measure the impact of time on the number
of errors workers make. Taking inspiration from the speed-
accuracy tradeoff curves developed in cognitive psychology
research [26, 32], we calculate a task’s error-time tradeoff
curve by giving workers varying time constraints to finish the
task and measuring the probability they make an error within
each time limit. We measure the error-time area under the
curve (or, simply, ETA) to reduce the curve to a single metric.
What follows is a detailed description of this process.

Error-Time Data Collection. Cognitive psychology has
demonstrated that the amount of time a person has to do a
task impacts their ability to do it well [26, 32]. To calculate
how much time is required to perform a crowdsourcing task
well, we sample different time limits (e.g., 0.2, 2, or 20 sec-
onds) and ask each worker within-subject to complete the task
at each time limit, with the time limits presented in random
order. After the time limit elapses, the task is disabled and
workers cannot submit their response. By using tasks with
known correct answers (gold standard tasks), we can calcu-
late the error rate for a task within each limit. In practice, we
recommend at least seven time conditions and 10 workers.
For a two cent task, this comes out to under $5. To deter-
mine time limits for a task, a task designer could define them
evenly spaced around an initial estimate.
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The data collected for an example task can be seen in Figure
1, where the x-axis represents the amount of time workers
were given, and the y-axis represents the error rate. In this
example, workers have a 95% chance of getting the answer
incorrect (or incomplete) when given one second to complete
the task, but only a 10% chance when given about 2.5 sec-
onds. We later demonstrate how worker consistency can be
used to create these curves even without ground-truth data.

Fitting the Error-Time Curve. Next we fit a sigmoid curve to
the recorded accuracies. Sigmoids (e.g., logistic curves) are
a good model for performance data that undergoes a phase
shift. In our data, this shift occurs at the point when the task
becomes feasible to complete in the given time limit. An ex-
ample error-time curve is shown fitted to the data in Figure 1.
The range of potential error rates can differ across tasks; for
example, a binary choice task has an observed error rate rang-
ing from 0 (always correct) and 0.5 (random). For this reason,
we scale the observed error rate to always be between 0 and
1 (and the curve clipped, if necessary, to ensure the predicted
error rate is also between 0 and 1).

Calculating the ETA. Prior work exploring the tradeoff be-
tween accuracy and time in task performance has primarily
focused on characterizing the functions and parameters of
these curves (e.g., that they are exponential [32]), or using
them to make empirical observations on a small number of
very similar tasks (e.g., on different amounts of object rota-
tions [22]). While these plots provide analytical value, they
do not facilitate comparison across the wide variety of tasks
found on microtask markets. Thus we extend the approach to
reduce the error-time curve into a single, cross-task compara-
ble, continuous metric.

With a model fit to the data, we reduce the curve to a single
score. Many reductions are possible; we use the area under
the curve (AUC). Inspired by the use of ROC AUC in machine
learning, the error-time area (ETA) under the curve captures
human performance under differing amounts of time. A small
ETA suggests the task can be performed correctly almost in-
stantaneously, while a large ETA suggests it is very difficult,
although there are some exceptions (e.g., if a task is diffi-
cult regardless of the time limit, the ETA will be small as it
measures relative, not absolute change in performance). Intu-
itively, each unit increase in ETA corresponds to a task requir-
ing an additional second to achieve the same work quality.
Because error is scaled, the ETA is finite and can be calcu-
lated by computing the integral at infinity.

Calculating Work Time and Wage. While ETA is inter-
pretable, other transformations of the curve have more direct
interpretations; Time@10, or the time it takes to achieve an
error rate at the 10th percentile, reflects the amount of time a
worker would need to achieve a relatively low error rate. By
multiplying this time with a target pay rate (e.g., minimum
wage), this metric can be used to price tasks. Such an ap-
proach may be preferable to using how long workers spend
on the task, since some workers rush through tasks and care
little about accuracy, while others spend more time than nec-
essary. Time@10 can be calculated by identifying the point
on the x-axis where the error-time curve crosses an error rate

of 0.1 (10%) (Figure 1). Alternate thresholds (e.g., Time@5)
would represent different tradeoffs between the fraction of
workers able to attain the given wage rate and task price.

Code Library. A framework for computing ETA is available
open-source at http://hci.st/eta. Users of the framework
begin by collecting task-relevant data. To do this they include
a Javascript library in their existing task HTML file and write
a few lines of code specifying the format of the task’s input
and the time points desired. They then upload the modified
task file to their crowdsourcing platform of choice. The li-
brary randomizes the order of the time limits, tells the worker
how long they have to complete the task, and disables the an-
swer area (but not the submit button) after the time elapses.
The task’s output can be analyzed using an R code library. It
outputs descriptive statistics (e.g., task time), plots the error-
time curve, and computes the task’s ETA along with other
objective and subjective measures.

This code library makes it possible to easily measure the ef-
fort a task requires via an initial HIT at the cost of a few dol-
lars. The computed error-time curve can be used in a number
of ways. Requestors can iterate on a task’s design to reduce
its ETA, and multiply Time@10 by an hourly wage to de-
termine the task’s payment. The ETA can also be published
along with the task to facilitate task selection by workers.

While ETA grows out of a large body of cognitive science lit-
erature for measuring effort, it is important to understand how
well it works in practice. For this reason, we ran a number of
studies to understand when it works, when it does not, and
why. Through four studies, we evaluate ETA as a measure of
effort. In Studies 1 and 2, we compare ETA to other objective
and subjective measures, including market price. In Study 3,
we additionally model the perceptual cost of a task to account
for instances where ETA does not match workers’ perceived
difficulty of a task. In Study 4, we extend our approach with a
methodology that allows us to measure ETA without ground
truth answers. Finally, we demonstrate how ETA can be used
to compare effort across different versions of a task.

STUDY 1: ETA VS. OTHER MEASURES OF EFFORT
We begin by comparing ETA and other measures of difficulty
(including time and subjective difficulty) across a number of
common crowdsourcing tasks. After describing the experi-
mental setup, designed to elicit the necessary data to generate
error-time curves and other measures for each task, we show
how closely the different measures matched.

Method
Study 1 and all subsequent experiments reported in this pa-
per were conducted using a proprietary microtasking platform
that outsources crowd work to workers on the Clickworker
microtask market. The platform interface is similar to that
of Amazon Mechanical Turk; users upload HTML task files,
workers choose from a marketplace listing of tasks, and data
is collected in CSV files. We restricted workers to those resid-
ing in the United States. Across all studies, 470 unique work-
ers completed over 44 thousand tasks. A followup survey
revealed that approximately 66% were female. We replicated
Study 1 on Amazon Mechanical Turk and found empirically
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Primitive Example Question
Binary (Binary Choice) Does this label apply to this image?
Scale (Likert Scale) How much do you agree with this statement?
Categorize Which category best applies to this image?
Tag Label this image with a tag.
Describe Describe this image.
Math Add these two numbers together.
Transcribe Copy this phrase exactly as presented.
Find Find a spelling error in this sentence.
Fix Correct the highlighted word in this sentence.
Search Search for the answer to this question online.

Table 1. Ten primitives common to most crowdsourcing workflows.

similar results, so we only report results using Clickworker in
this paper.

Primitive Crowdsourcing Task Types
We began by populating our evaluation tasks with common
crowdsourcing task types, or primitives, that appear com-
monly as microtasks or parts of microtasks. To do this, we
looked at the types of tasks with the most available HITs
on Amazon Mechanical Turk, at reports on common crowd-
sourcing task types [15], and at crowdsourcing systems de-
scribed in the literature (e.g., [4]). After several iterations
we identified a list of ten primitives that are present in most
crowdsourcing workflows (Table 1, Figure 2). For example,
the Find-Fix-Verify workflow [4] could be expressed using
a combination of the FIND (identify sentences which need
shortening), FIX (shortening these sentences), and BINARY
primitives (verifying the shortening is an improvement). In
many cases, the primitives themselves (or repetitions of the
same primitive) make up the entire task, and map directly to
common Mechanical Turk tasks (e.g., finding facts such as
phone numbers about individuals (SEARCH)).

We instantiated these primitives using a dataset of images of
people performing different actions (e.g., waving, cooking)
[34] and a corpus of translated Wikipedia articles selected be-
cause they tend to contain errors [1].

Experimental Design
We presented workers with a mixed series of tasks from the
ten primitives and manipulated two factors: the time limit
and the primitive. Each primitive had seven different possible
time limits, and one untimed condition. The exact time limits
were initialized using how long workers took when not under
time pressure. The result was a sampled, not fully-crossed,
design. For each worker we randomly selected five primitives
for them to perform; for each primitive, three questions of that
type were shown with each of the specified time limits. The
images or text used in these questions were randomly sam-
pled and shuffled for each worker. To minimize practice ef-
fects, workers completed three timed practice questions prior
to seeing any of these conditions. The tasks were presented
in randomized order, and within each primitive the time con-
ditions were presented in randomized order. Workers were
compensated $2.00 and repeat participation was disallowed.

A single task was presented on each page, allowing us to
record how long workers took to submit a response. Under

Figure 2. The tag, fix, and search tasks.

Figure 3. (a) Basic interface showing the categorize task and the count-
down timer. (b) To measure effort in Studies 1, 2 and 4, questions were
disabled after the timer expires. (c) To measure perceptual costs in Study
3, the question was hidden, but workers could still answer the question.

timed conditions, a timer started as soon as the worker ad-
vanced to the next page. Input was disabled as soon as the
timer expired, regardless of what the worker was doing (e.g.,
typing, clicking). An example task is shown in Figure 3.

Measures
The information we logged allowed us to calculate behavioral
measures for each primitive:

– ETA. The ETA is the area under the error-time curve.

– Time@10. We also calculated the time it takes to achieve
an error rate at the 10th percentile.

– Error. We measured the error rate against ground truth
for each primitive. If there were many possible correct
responses, we manually judged responses while blind to
condition. Automatically computing distance metrics (e.g.,
edit distance) resulted in empirically similar findings.

– Time. We measured how long workers took to complete the
primitive without any time limit.

After each task block was complete, we additionally asked
workers to record several subjective reflections:

– Estimated time. We asked workers to report how long they
thought they spent on a primitive absent time pressure.
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Primitive Subj.Rank ETA [conf. int.]
Time@10
[Time@10Cost]

Error
Time

TLX
Cost

Time Est.Time RSD Mkt.Price Est.Cost

Binary 2.50 (1) 1.58 [1.49-1.73] (1) 2.1 [0.7] (1) 0.01 (3) 3.3 (1) 4.1 (1) 0.19 (1) 36.6 (2) 0.33 (1) 4.1 (1)
Scale 3.33 (2) 1.88 [1.73-2.05] (2) 2.7 [0.9] (3) 0.00 (2) 4.2 (3) 4.5 (3) 0.15 (3) 38.1 (3) 0.50 (2) 4.8 (3)
Categorize 3.45 (3) 1.97 [1.87-2.07] (3) 2.4 [0.8] (2) 0.00 (1) 3.9 (2) 4.4 (2) 0.19 (2) 36.2 (1) 1.00 (5) 4.3 (2)
Tag 4.30 (4) 2.91 [2.66-3.46] (4) 4.0 [1.3] (4) 0.10 (6) 5.7 (4) 6.6 (4) 0.14 (4) 44.1 (4) 1.00 (5) 5.8 (4)
Transcribe 6.40 (5) 7.62 [7.14-8.11] (8) 10.0 [3.3] (8) 0.19 (10) 11.6 (8) 10.8 (8) -0.00 (7) 49.6 (7) 1.00 (5) 10.6 (9)
Find 6.42 (6) 3.88 [3.55-4.34] (5) 5.5 [1.8] (5) 0.13 (7) 10.9 (7) 8.1 (5) -0.13 (9) 48.3 (5) 1.00 (5) 6.1 (5)
Fix 6.53 (7) 4.31 [3.88-4.66] (6) 6.6 [2.2] (6) 0.17 (8) 10.5 (6) 8.9 (6) 0.00 (6) 49.4 (6) 5.00 (9.5) 7.0 (6)
Add 6.90 (8) 4.92 [4.39-5.38] (7) 7.7 [2.6] (7) 0.09 (5) 9.8 (5) 9.6 (7) 0.03 (5) 51.9 (9) 5.00 (9.5) 8.2 (7)
Describe 7.15 (9) 7.78 [6.96-8.75] (9) 12.2 [4.1] (9) 0.18 (9) 15.4 (9) 11.7 (9) -0.13 (8) 51.5 (8) 1.00 (5) 8.9 (8)
Search 8.03 (10) 11.7 [10.8-12.5] (10) 16.0 [5.3] (10) 0.04 (4) 18.8 (10) 15.2 (10) -0.16 (10) 51.9 (10) 3.33 (8) 13.2 (10)

Kendall’s Tau Coefficients (∗: p<0.05, ∗∗: p<0.01)

w/Subj.Rank - 0.87∗∗ 0.82∗ 0.29 0.69∗ 0.82∗ 0.69∗ 0.78∗ 0.66∗ 0.78∗

w/Mkt.Price 0.66∗ 0.56 0.51 0.20 0.41 0.51 0.41 0.56 - 0.51

Table 2. Measures of effort for ten crowdsourcing primitives (rank order in each column in brackets). ETA has the highest rank correlation with the
subjective rank of a task. All prices are in cents. (Study 1, 2)

Time estimation has previously been used as an implicit
signal of task difficulty [5].

– Relative subjective duration (RSD). RSD, a measure of
how much task time is over- or underestimated [5], is ob-
tained by dividing the difference between estimated and
actual time spent by the actual time spent.

– Task load index (TLX). The NASA TLX [10] is a validated
metric of mental workload commonly used in human fac-
tors research to assess task performance. It consists of a
survey that sums six subjective dimensions (e.g., mental
demand).

A separate experimental design that contained all ten prim-
itives, where each worker completed three untimed practice
questions followed by three untimed questions for each prim-
tive (with the primitives presented in random order), was used
to obtain the

– Subjective rank. Workers considered all of the primitives
they completed and ranked them in order of effort required.

As rankings produce sharper distinctions than individual rat-
ings [2], we consider subjective rank to represent our ground
truth ranking of the primitives. However, rank would not be a
deployable solution for requesters. Ranking means that work-
ers would need to test the new task against at least log(n)
of the primitives, incurring a large fixed overhead. Further,
ranking is ordinal, and cannot quantify small changes in ef-
fort. In contrast, ETA is an absolute ranking, can measure
small changes in effort, and only needs to be measured for
the target task to compare it with other tasks.

Analysis
60 workers completed Study 1, with 30 performing each
primitive. We averaged our dependent measures across all
30 workers, and compared the ranking of primitives induced
by each measure to the average subjective ranking (subjec-
tive rank was obtained by having 40 other workers rank all
ten primitives). We used the Kendall rank correlation coeffi-
cient to capture how closely each measure approximated the
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Figure 4. The error-time curves for each primitive show how the errors
made decrease as more time is provided to answer a question.

workers’ ranks, with Holm-corrected p-values calculated un-
der the null hypothesis of no association. A rank correlation
of 1 indicates perfect correlation; 0 indicates no correlation.
Measures that capture the subjective ranking accurately can
analyze new tasks types without comparing them against mul-
tiple benchmark tasks.

Results
Table 2 reports overall results for each primitive using each
measure, as well as the resulting rank ordering. Bootstrap
confidence intervals are also reported for ETA; their relatively
small range suggests that task ranking remains fairly stable
with 30 workers. Raw error-time plots, shown in Figure 4,
verify that the data follows a sigmoidal pattern.

A Kendall’s tau test reveals that ETA is significantly more
correlated with subjective rank (τ=0.87) than other measures
such as Time or TLX. It correctly lists Binary as the easi-
est task (ETA=1.58) followed by Scale (1.88) and Categorize
(1.97), with Search being the most difficult (11.7), suggest-
ing that the ordering of task difficulty under ETA matches
workers perceptions of relative task difficulty relatively well.
In fact, we find that ETA only misranks TRANSCRIBE — it
was perceived as easier than other tasks that took more time.
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In an upcoming section, we demonstrate how the high per-
ception cost in this task may account for why it seemed like
less effort. To understand the robustness of ETA with respect
to the number of workers requested, we conducted a boot-
strap analysis by subsampling from our worker pool, varying
n between 1 and 30, then computing the 10th and 90th per-
centile of the estimated ETA for each n. We find that ETA can
be reasonably estimated with a small number of workers On
average, ten workers were required to obtain an ETA where
90% of the values are within 20% of the true value; with 20
workers, 95% of values are within 10% of the true value. As-
suming each task costs 2 cents, it costs about $5 to generate
the ETA for a task using ten workers.

The next best metrics after ETA were Time@10 (a transfor-
mation of the same error-time curve used for ETA), and es-
timated time. But while the relative rankings provided by
Time@10 and estimated time are the same, Time@10 addi-
tionally encodes work quality. Corroborating prior research,
our results suggest that time (and estimated time) can be mis-
leading. For example, FIND takes 10.9 seconds with no time
limit (and workers estimate it takes 8 seconds), but the task
can be completed well in as little as 5.5 seconds (Time@10).

Previously-validated approaches were less highly correlated
with subjective rank. Relative subjective duration struggled
because the relative error increases as tasks take less time,
making it difficult to use as an estimate across tasks of dif-
ferent time classes. NASA-TLX could not discriminate easy
tasks well and did not order these correctly.

STUDY 2: ETA VS. MARKET PRICE
Study 1 shows that ETA is highly correlated with workers’
subjective ranking of task difficulty. Measuring task difficulty
is also useful because it can be used to price tasks. Thus,
Study 2 attempts to estimate the market price of each task,
which we then compare against our measures from Study 1.

Method
To extract the market price for our 10 primitives, we launched
a set of 10 pricing tasks, one for each primitive. For each pric-
ing task, we held the task’s price constant at 10 cents, but ma-
nipulated the number of primitive tasks required to complete
the pricing task. This was conducted as a between-subjects
study, with each worker assigned in a round-robin fashion to
a primitive and fixed number of primitive tasks to complete.
This number varied between 1 and 40, with six levels used
for each primitive. The exact range and values for each level
depended on the primitive’s difficulty.

We measured each pricing task’s acceptance rate as the ratio
of task accepts to task previews. When workers previewed
the task, they were shown a sample primitive task and told the
number of such tasks they would have to complete to get paid.
Market behavior should result in more workers accepting the
task if they only have to complete one repetition than if they
have to complete 40. All pricing tasks remained on the market
for the same 18-hour period. A mean of 20.0 (σ=3.82) people
viewed each condition, with 17.3 (σ=4.38) completing a task
after viewing it.

– Market price. We estimated the market price of each primi-
tive by identifying the maximum number of primitive tasks
where the pricing task’s acceptance rate was above 90%.
The mean unit cost of that primitive was then calculated by
dividing 10 cents by that number.

Additionally, we consider two other measures of cost:

– Time@10 cost. Using Time@10, we estimated how much
requesters should pay to complete each primitive, assum-
ing continuous work and an hourly wage of $12.

– Estimated cost. As a rough, subjective estimate of a prim-
itive’s reservation wage, we also asked workers how much
they would want to be paid for performing it once.

Results
Table 2 reports all three measures of cost, with Time@10 cost
correlating best with subjective rank. While we find that mar-
ket price provides some signal of effort, it is ultimately noisy
and expensive to obtain. For one, the estimated market price
for many primitives ended up being the same, indicating mar-
ket inelasticity, making it hard to accurately rank the tasks.
Further, the estimate was noisy — obtaining greater precision
may require significantly more workers and conditions. With
six conditions and 20 workers per condition over 18 hours,
pricing data is already relatively expensive ($12 per task) and
time-consuming to gather. In a paper measuring economic
utility, over 20,000 jobs costing almost $1000 were run to
compute the market price of three tasks (where price was var-
ied between 1 and 6 cents) [30]. Also, market prices fluctuate;
tasks that are cheap to perform at one moment may wind up
being expensive later.

A Kendall’s tau test reveals that only subjective rank, our
previous ground truth, is significantly correlated with mar-
ket price (0.66), supporting its use in Study 1. While the
lack of significance with other metrics is unsurprising given
the coarse-grained nature of ranking by market price, we
nonetheless find that ETA and TLX are the next most highly
correlated measures (0.56). These results also add an ethi-
cal dimension to market pricing as a dependent variable, as
it allows requesters to estimate the wage they are paying for
quality work.

STUDY 3: MODELING PERCEPTUAL COSTS WITH ETA
Study 1 suggests that ETA can accurately capture task effort,
and Study 2 suggests that market price, while noisy, is cor-
related with subjective rank and ETA. In Study 3 we develop
a model that also measures the perceptual cost of a task, to
help account for the one ranking error that ETA made relative
to workers’ rankings. In this model, we note that effort has
two components. The first, perceptual and cognitive effort, is
the effort workers need to process the provided input (e.g., an
image or text). The second, motor effort, is the effort spent
translating their decisions into physical action (e.g., typing
or clicking). Informally, workers may value their perceptual
and cognitive time more than they value their motor time. By
isolating the perceptual component of the task relative to the
whole and estimating the time workers need to perceive the
task (as opposed to the time required to complete the task),
we can further improve our estimates of effort.
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ETA predicted that TRANSCRIBE required more effort than
workers felt it did. One important reason for the difference
may lie in the relative balance of perceptual and cognitive
effort. In other words, TRANSCRIBE relies heavily on low-
level perception, whereas other primitives such as ADD rely
on more cognition (or System 1 vs. System 2 thinking [19]).
For instance, we may expect to spend a larger proportion of
time reading the text provided for TRANSCRIBE as compared
to SEARCH, where more time is instead spent searching for
the answer than reading the provided question.

Method
For Study 3 we followed a similar design to Study 1. How-
ever, instead of randomly choosing a time limit for the en-
tire task, we randomly chose a limit for the amount of time
workers could see the stimulus. When the time limit expired
the stimulus was hidden but workers still had to complete the
task (Figure 3c). Workers were only limited in the time they
could spend perceiving the task. For example, with BINARY,
a worker might be shown the source image for 0.5 seconds
and asked to answer whether the tag “bird” applied to the
image. Workers had unlimited time to submit their response.
Using the results with 60 workers, we again generated a error-
time curve by fitting an exponential curve to the data, com-
puting three metrics based on it.

– PerceptionETA. Similar to ETA, this measures the area un-
der the error-time curve, but where time now corresponds
to how long the stimulus was shown.

– Perception@10. We estimated how long the stimulus
needed to be shown in order to achieve an error rate at the
10th percentile.

– PerceptionRatio. This measure computes the ratio of
perception time, Perception@10, to total required time,
Time@10. As workers have unlimited time to an-
swer questions, Perception@10 can exceed Time@10.
Nonetheless, this rarely occurs in practice.

To analyze the data, we compared the three measures of per-
ception with the workers’ subjective ranking from Study 1.
We also hypothesized that ETA and measures of perception
could be combined to produce an improved ranking model,
and use ETA, PerceptionETA and PerceptionRatio as features
in an ordered logistic regression (OLR) model.

Results
Our results in Table 3 show that ADD requires significantly
less perception time (0.95) than TRANSCRIBE (5.36). This
suggests that workers spend a larger proportion of time pro-
cessing the perceived information for ADD. In other words,
the cognitive load for ADD may be much higher than for
TRANSCRIBE, albeit for a shorter amount of time. This in-
crease may explain why ADD was perceived as more difficult
than TRANSCRIBE, even though it took significantly less time
to complete.

However, perception metrics alone are a poor predictor of
subjective rank or market price (ranging from 0.10 to 0.47,
n.s.). In other words, proportion of time spent perceiving
may only have a secondary effect on the perceived difficulty

Primitive
Perception...

OLR
...ETA ...@10 ...Ratio

Binary 0.37 (4) 0.63 (4) 0.30 (4) 1 (1)
Scale 0.40 (5) 0.65 (5) 0.24 (5) 2 (2)
Categorize 0.86 (8) 2.28 (9) 0.95 (1) 3 (3)
Tag 0.09 (1) 0.14 (1) 0.04 (8) 4 (5)
Transcribe 3.87 (10) 5.36 (10) 0.54 (2) 6 (6)
Find 1.44 (9) 2.21 (8) 0.40 (3) 3 (3)
Fix 0.42 (6) 0.67 (6) 0.10 (7) 7 (7)
Add 0.50 (7) 0.95 (7) 0.12 (6) 8 (8)
Describe 0.16 (2) 0.31 (2) 0.03 (10) 9 (9)
Search 0.31 (3) 0.49 (3) 0.03 (9) 10 (10)

Kendall’s Tau Coefficients (∗: p<0.05, ∗∗: p<0.01)

w/Subj.Rank 0.07 0.11 0.47 0.90∗∗

w/Mkt.Price 0.10 0.10 0.20 0.67∗

Table 3. Measures of perceptive effort for the same primitives, as well
the rankings produced by an OLR model that takes into account both
ETA and these measures. (Study 4)

of a task. But by using a combined ETA-Perception OLR
model, we obtain a rank correlation of 0.90 (p<0.01), higher
than any individual metric. Models that used combinations
of subjective or time-based measures were not as performant.
TRANSCRIBE now appears in the right rank order, with the
only confusion being that now FIND is estimated as easier
than TAG and TRANSCRIBE. This same model also produces
a rank correlation of 0.67 with a primitive’s market price,
higher than any other individual metric.

In summary, while ETA alone is a reasonable predictor of
overall task effort, it can be augmented with measures of per-
ceptual cost to attain even better predictions, at the cost of per-
forming an additional experiment. Perceptual cost can also
indicate along what dimension a task is easy or hard.

STUDY 4: MEASURING ETA WITHOUT GROUND TRUTH
To evaluate worker performance and calculate ETA we have
thus far assumed that ground truth labels for a task exist.
These labels are used to establish the y-axis of the error-time
curve — the probability of an error when given the time limit
on the x-axis. Ground truth labels may also be difficult to
generate for tasks with subjective answers.

In Study 4 we create error time curves for tasks without using
a ground-truth measure of quality. We explore two alternative
measures of performance for subjective tasks:

– Internal consistency. If a worker submits the same re-
sponse under a time limit as they give with no time limit,
then the task can be deemed correct.

– Between-subject variation. If different workers submit the
same responses with a given time limit, then the task can
be deemed correct.

Measures of internal consistency and between-subject vari-
ation make different assumptions about a task: consistency
assumes that workers will reproduce similar answers for a
particular question, while variation assumes that some an-
swers to a question are more likely than others. Both ap-
proaches can be applied to objective tasks, but it is cheaper
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Primitive Subj.Rank
Consistency Variation Time

TLX Est.Cost Perception
ETA OLR

ETA Time@10 ETA Time@10 Time RSD

Obj. Scale 2.63 (1) 1.57 (1) 2.10 (1) 1.75 (1) 2.30 (1) 3.51 (2) -0.13 (2) 29.2 (1) 10.65 (2) 0.41 (2) 1 (1)
Obj. Categorize 2.74 (2) 1.80 (2) 2.40 (2) 2.07 (2) 3.10 (2) 3.51 (1) 0.14 (1) 30.1 (2) 10.72 (3) 1.13 (4) 2 (2)
Subj. Scale 3.22 (3) 1.96 (3) 3.00 (3) 2.35 (3) 4.00 (4) 4.11 (3) -0.25 (4) 30.8 (4) 10.40 (1) 1.25 (5) 3 (3)
Subj. Categorize 3.89 (4) 2.77 (6) 4.20 (6) 2.71 (4) 4.20 (5) 4.74 (4) -0.31 (6) 30.4 (3) 10.79 (4) 1.55 (6) 4 (4)
Obj. Tag 3.96 (5) 2.61 (5) 4.10 (5) 3.34 (6) 4.40 (6) 5.27 (5) -0.21 (3) 32.6 (5) 12.76 (6) 0.77 (3) 5 (5)
Subj. Tag 4.56 (6) 2.50 (4) 3.50 (4) 2.94 (5) 3.50 (3) 6.14 (6) -0.28 (5) 35.9 (6) 11.72 (5) 0.36 (1) 6 (6)

Table 4. Task difficulty can also be measured in the absence of ground truth data. While ETA alone accurately captures the relative ranking of objective
tasks, perception measures can help explain differences for subjective tasks. (Study 4)

to use ground truth when available. We use them to see if
we can replicate replicate the results from Study 1 with the
same primitives, and to quantify the effort required for new,
subjective versions of the primitives.

Method
We focused on three primitives in Study 4: CATEGORIZE,
SCALE, and TAG. For each primitive we created alternatives
that were objective (i.e., identical to those in Study 1) or sub-
jective. For example, objective CATEGORIZE asked workers
which of five action labels applies to an image, while subjec-
tive CATEGORIZE asked workers which of five emotions best
represented their impression of an image. Objective SCALE
asked how applicable an action was, while subjective SCALE
asked how applicable an emotion was to an image. Objective
TAG asked workers to tag the image with an action being per-
formed, while subjective TAG instead asked the workers for a
word describing how they felt about the image.

Workers in Study 4 were shown tasks for one primitive, and
first completed three practice tasks to minimize practice ef-
fects. They were then exposed to seven timed conditions,
with three tasks per timed condition, sampled so that all prim-
itives were shown the same number of times in each condition
across all workers. After workers performed the tasks in the
timed conditions, the exact same set of tasks was shuffled and
presented under an untimed condition.

We calculated internal consistency by comparing the worker’s
answer on the timed categorization, scale, or tag task to the
untimed answer afterwards. We defined consistency as the
probability of a worker’s answers being identical in both
cases. Defining a distance metric for each primitive (e.g.,
edit distance for the tag task) results in empirically similar
findings. While we find that these measures were sufficient
in practice, other robust methods of measuring worker error
also exist (e.g., [18]). We calculated the between-subjects
variation for each task by counting the number of unique an-
swers in the timed conditions across all workers. For both
metrics, we can again generate error-time curves — in this
case consistency-time curves. They are, as before, sigmoidal.
We use these curves to calculate ETA and Time@10.

Similar to Study 1, we recorded task completion time, subjec-
tive cost estimates for the task, and NASA-TLX scores. Also
replicating Study 1, to understand how workers subjectively
ranked the primitives, we ran a separate task containing all
six primitives, showing only the untimed condition. We then

sorted the six tasks by workers’ summative rank and com-
pared it to the other measurements using Kendall’s tau. As in
Study 3, we also measured the perceptual cost of these tasks,
slightly modifying the timed condition to hide the stimulus
rather than disable input. 40 workers completed Study 4.

Results
As expected, the more time a worker was given to complete a
task, the more likely their initial answer would be consistent
with the second, untimed one (p<.001). In the case of objec-
tive CATEGORIZE, the error rate drops from a mean of 0.82
when workers were given half a second, to 0.03 when given
five seconds. With between-subjects variation, the number
of unique responses also decreases as more time is given
(p<.001). For objective CATEGORIZE, the mean number of
unique answers for an image decreased from 3.5 with half a
second, to 1.2 with five seconds.

We find that the relative ordering of ETA and Time@10 for
the three objective primitives is the same as when we use
ground truth data in Study 1, and the absolute values of these
metrics are also similar (Table 4). This suggests that both
internal consistency and between-subjects variation are rea-
sonable substitutes for ground truth data for objective tasks.
However, between-subjects variation has a few advantages. It
only requires each question to be asked once, and thus is sig-
nificantly cheaper to run. Additionally, the rank correlation of
ETA with subjective rank was better using between-subjects
variation (0.87, tying Duration and TLX) than internal con-
sistency (0.6). While the rank ordering of the objective tasks
using other metrics such as RSD are also similar to what we
observed in Study 1, their absolute values are substantially
different — though they were correlated with effort overall,
they appear difficult to interpret individually.

The perceptual cost of a task also seems to play a signifi-
cant role in the case of the subjective primitives we studied.
For instance, subjective TAG had the lowest perceptual cost,
suggesting that while its ETA is lower than that of objective
TAG, workers may perceive it as more difficult. In fact, an
OLR model that combines ETA and PerceptionETA results
in a completely rank-correlated prediction.

EXAMPLE APPLICATION: TASK EVALUATION
Using four studies, we showed that ETA is an accurate data-
driven measure of task effort, and that it enables robust com-
parison across similar tasks. An accurate measure of the ef-
fort required to complete a task can enable requesters to com-
pare different approaches to their tasks, iterate toward a bet-
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Subj.Rank ETA Time@10
[Time@10 Cost]

Time

Categorize

2 1.75 (1) 1.63 (1) 2.3 [0.8] (1) 3.74 (1)
4 2.60 (2) 1.84 (2) 2.5 [0.8] (2) 4.11 (2)
8 3.50 (4) 2.53 (3) 3.6 [1.2] (3) 5.71 (3)
16 4.15 (5) 3.20 (5) 5.0 [1.7] (5) 6.42 (4)

Tag 3.00 (3) 3.08 (4) 4.2 [1.4] (4) 6.86 (5)

Table 5. As the number of alternatives increases, categorization tasks
increase in difficulty. With 16 options, instead providing a direct tag is
easier, even though it requires more time in an uncontrolled setting.

ter design, and price their task objectively. We have discussed
how the measure might be transformed into price using a sim-
ple transform. We now provide an example of how it can
also be used to prototype and evaluate task designs, using
a similar approach to previous work that compared user in-
terfaces by offering them for different prices on Mechanical
Turk [30]. Using this same approach, task designers can iter-
ate and make data-driven decisions about their own tasks.

In our example, we consider several alternatives to an image
tagging task. There are many ways such a task could be de-
signed. For example, workers could be asked to choose from
among a number of existing tags or to enter the text of a new
tag. We use ETA to decide when it is better to ask them to
select tags versus enter text by comparing the TAG primitive
(“Generate a label that applies to this image,”) with the the
CATEGORIZE primitive (“Pick the label that applies to this
image,”) where workers were shown 2, 4, 8, or 16 labels.

For each potential task design we collected the data necessary
to calculate ETA from 20 workers, paying $2. For the purpose
of this example, we also collected a subjective ranking from
each worker. Relative performance information, however, is
not necessary in practice to iterate on the design.

As the number of options increases, the time taken to gener-
ate a correct answer also increases (Table 5). ETA seems to
increase sigmoidally, suggesting that answer strategies may
change as the list of options gets longer. We also find an
interesting discontinuity: asking workers to generate a tag
from scratch requires more effort than asking workers to se-
lect from a list of 8 labels, but less effort than selecting from
16 options. Although workers took longer in the uncontrolled
setting to generate a tag (6.9s vs 6.4s), they were able to pro-
vide the right tag within less time (4.2s vs 5.0s). In addition
to the higher perceptual costs of processing more options, the
paradox of choice may also partially explain the increased
difficulty of selecting from more options [17].

Using other measures resulted in slight ranking differences:
workers ranked tagging as easier than selecting from 8 op-
tions, but wished to get paid most for tagging. As noted previ-
ously, using subjective ranking makes comparison with other
tasks difficult, and time or cost estimates tend to be noisy.

DISCUSSION
ETA represents a first step towards effectively modeling task
effort. Future directions involve extending the measure and
exploring alternatives, understanding the impact of monetary
incentives, and exploring additional uses.

While we believe that ETA is broadly applicable, the metric
has limitations. For one, it requires gold-standard responses
or limited response variability. For tasks where this is not
possible (e.g., written editorials) an additional crowdsourcing
step could manually evaluate each response. Next, ETA mea-
sures the effort required for a task in the average case. How-
ever, perceived effort differs between workers depending on
their intrinsic ability (e.g., math aptitude) [27]. Measuring
ETA with respect to particular groups or individuals could
account for differing expertise and help workers better select
ability-appropriate tasks, as would alternative models that ac-
count for multiple dimensions of expertise (e.g., [31]). Addi-
tionally, task effort is moderated by the content of a task, not
just its format. While in our experiments we focused primar-
ily on image-based tasks, a reading comprehension multiple-
choice question intuitively seems harder than choosing the
right color for an image from a list for instance. Thus, in ad-
dition to differentiating primitives in general, ETA could be
extended to understand different users and types of content.

Other uses of the error-time curve may reveal new dimensions
of task effort. Characterizing the curve’s shape could reveal
subtler differences in task effort. Beyond measuring the per-
ceptual effort of a task, ETA could also be used to capture
motor costs. This would allow us to understand how effort is
split between perceptive, cognitive, and motor function.

We could also study whether the ETA components associated
with each primitive were additive. If the total effort required
for a task is simply the sum of its constitutent primitives’
ETAs, it would be easy to use the approach to iterate on com-
plex tasks. However, tasks may have interaction effects with
each other. For example, repeating a task may lead to learn-
ing effects or complacency. Interleaving different tasks may
increase task time because of switching costs but potentially
reduce boredom [28], and it would be valuable to extend ETA
to capture these nuances.

Finally, our analysis focused on instances where workers are
paid for their work. However, monetary incentives can in-
fluence task completion; paying more motivates workers to
complete more tasks [24], while not paying at all tends to
lead to fast but low-quality work [23]. Providing variable pay
based on speed of completion could induce different points on
the error-time curve, despite the fact that we saw that crowd
markets were generally price-inelastic. Different approaches
may be required to capture task effort using volunteers.

CONCLUSION
Crowdsourcing envisions an effective marketplace that con-
nects interested requesters to on-demand human intelligence.
However, that marketplace today is plagued with problems of
quality and pricing. The Mechanical Turk market for lemons
[14] may be the result of both a large number of poorly de-
signed tasks (and hence poor quality crowd work [20]), as
well as requesters’ systematic underestimation of the effort
required to complete tasks [12].

The error-time area (ETA) metric, which measures the effort
required for crowdsourced tasks, can help improve the status
quo. It accurately recovers workers’ subjective rankings of
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task effort, and can be cheaply computed with simple instru-
ments. The metric can be used in pricing tasks, and enables
rapid task prototyping and evaluation. Given a crowdsourced
library of tasks and their associated measures, requesters can
benchmark their tasks against known templates. This may
make it possible to identify, using ETA, task transformations
that use the primitives that require the least effort. With a
platform that automatically measures ETA for tasks, work-
ers can also use these scores to figure out whether a task is
worth their time. By providing requesters and workers with
improved signals of effort, tools such as ETA can pave the
way towards a better crowdsourcing experience.
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