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ABSTRACT
We present hybrid crowd-machine learning classifiers: clas-
sification models that start with a written description of a
learning goal, use the crowd to suggest predictive features
and label data, and then weigh these features using machine
learning to produce models that are accurate and use human-
understandable features. These hybrid classifiers enable fast
prototyping of machine learning models that can improve on
both algorithm performance and human judgment, and ac-
complish tasks where automated feature extraction is not yet
feasible. Flock, an interactive machine learning platform, in-
stantiates this approach. To generate informative features,
Flock asks the crowd to compare paired examples, an ap-
proach inspired by analogical encoding. The crowd’s ef-
forts can be focused on specific subsets of the input space
where machine-extracted features are not predictive, or in-
stead used to partition the input space and improve algorithm
performance in subregions of the space. An evaluation on
six prediction tasks, ranging from detecting deception to dif-
ferentiating impressionist artists, demonstrated that aggregat-
ing crowd features improves upon both asking the crowd for
a direct prediction and off-the-shelf machine learning fea-
tures by over 10%. Further, hybrid systems that use both
crowd-nominated and machine-extracted features can outper-
form those that use either in isolation.
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INTRODUCTION
Identifying predictive features is key to creating effective ma-
chine learning classifiers. Whether the task is link prediction
or sentiment analysis, and no matter the underlying model,
the “black art” of feature engineering plays a critical role in
success [10]. Feature engineering is largely domain-specific,
and users of machine learning systems spend untold hours ex-
perimenting. Often, the most predictive features only emerge
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Figure 1. Flock is a hybrid crowd-machine learning platform that capi-
talizes on analogical encoding to guide crowds to nominate effective fea-
tures, then uses machine learning techniques to aggregate their labels.

after many iterations [36]. And though feature engineers may
have deep domain expertise, they are only able to incorporate
features that are extractable via code.

However, embedding crowds inside of machine learning ar-
chitectures opens the door to hybrid learners that can explore
feature spaces that are largely unreachable by automatic ex-
traction, then train models that use human-understandable
features (Figure 1). Doing so enables fast prototyping of clas-
sifiers that can exceed both machine and expert performance.
In this paper, we demonstrate classifiers that identify people
who are lying, perform quality assessment of Wikipedia ar-
ticles, and differentiate impressionist artists who use similar
styles. Previous work that bridges crowdsourcing and ma-
chine learning has focused on optimizing the crowd’s efforts
(e.g., [8, 21, 39]): we suggest that inverting the relationship
and embedding crowd insight inside live classifiers enables
machine learning to be deployed for new kinds of tasks.

We present Flock, an end-user machine learning platform that
uses paid crowdsourcing to speed up the prototyping loop and
augment the performance of machine learning systems. Flock
contributes a model for creating hybrid classifiers that intelli-
gently embed both crowd and machine features. The system
allows users to rapidly author hybrid crowd-machine learners
by structuring a feature nomination process using the crowd,
aggregating the suggested features, then collecting labels on
these new features. It loops and gathers more crowd features
to improve performance on subsets of the space where the
model is misclassifying many examples. For instance, given
a decision tree that uses machine-readable features, Flock can
dynamically grow subtrees from nodes that have high classi-
fication error, or even replace whole branches. In addition to
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improving performance, these constraints can help focus the
crowd’s brainstorming on a subset of the example space to
generate more informative features.

Flock’s success relies on crowds generating informative fea-
tures. While crowds of people can excel at generating ideas
[49, 22] and labeling subtle behavioral signals, they are gener-
ally poor at introspecting on the signals they use to make deci-
sions [13], and even poorer at weighing evidence properly to
make a decision [18]. In fact, there are many tasks where the
crowd’s predictions are significantly worse than even naı̈ve
algorithms — for instance, in identifying deceptive online re-
views [31], or in categorizing businesses [46]. Nevertheless,
crowds can identify useful attributes to classify images [25],
suggesting that proper scaffolding of the process might lead
to success. Comparing and contrasting examples highlights
similarities and differences, and encourages deeper thinking
[15]. To this end, we introduce an approach inspired by ana-
logical encoding [14]: Flock asks crowd members to guess
which of two examples is from a positive class and which is
from the negative class, then write a reason why. These rea-
sons become features: Flock automatically clusters the rea-
sons, then recruits crowds to normalize each cluster and pro-
duce features. These features are then used by the crowd to
annotate each example.

Rather than help people weigh evidence correctly, we recog-
nize that this is a straightforward task for most learning al-
gorithms. Thus, systems can harness the crowd’s collective
insight through repeated comparisons to identify potentially
predictive features, including ones that require subtle human
judgment, and then use statistical machinery to identify those
that actually matter.

We demonstrate Flock’s effectiveness through an evaluation
of six broadly different prediction tasks, including discerning
videos of people telling the truth or lying and differentiat-
ing between paintings by impressionist artists. We find that
aggregating crowd features is more accurate than asking for
a direct prediction from the crowd, and produce strong evi-
dence that hybrid crowd-machine systems such as Flock can
outperform systems that only use either. On these prediction
tasks, these hybrid systems improve on both direct predic-
tions and off-the-shelf classifiers by an average of over 10%.

Though crowdsourcing has generally either been portrayed as
a stopgap solution for machine learning systems [43] or a goal
for artificial intelligence to optimize [8], our work reinforces
the benefits of a productive synthesis. Using crowds, classi-
fiers can begin working minutes after a request, and gradually
transition from a crowd-based to machine-based classifier. In
this paper, we present a model for such a synthesis.

RELATED WORK
We start by reviewing systems that support the development
of machine learning models. These include end-user sys-
tems designed to streamline the development process, as well
as interactive machine learning systems. We then examine
research at the intersection of crowdsourcing and machine
learning. Prior work here has mainly focused on optimizing
the monetary cost of crowdsourcing and on using crowds as

part of the learning process, either through labeling or feature
suggestion. This line of work suggests a trajectory toward
integrating the entire machine learning pipeline with crowds,
from feature generation to prediction.

Flock builds on these approaches by leveraging the strengths
of both crowds and machines to learn hybrid models that
can be iteratively improved. Extending the literature on in-
tegrating crowds and machines, Flock provides a generalized
framework for augmenting machine learning models with
crowd-nominated features. In particular, the crowd gener-
ates (and labels) features, doing so in ways that can integrate
with machine learning algorithms to support weak areas of a
machine-only classifier.

Supporting Machine Learning
Interactive machine learning systems can speed up model
evaluation and helping users quickly discover classifier de-
ficiencies. Some systems help users choose between multiple
machine learning models (e.g., [17]) and tune model parame-
ters, for instance through visualizing confusion matrices [44].
Others enable rapid iteration by making model re-training in-
stantaneous (e.g., [40]), or allowing for fast switching be-
tween programming and evaluating example attributes [35].

In interactive machine learning systems, end-users train clas-
sifiers by providing focused input. These systems may fo-
cus on example generation (e.g., [19]), labeling (e.g., [11]),
re-ranking (e.g., [12]), or even feature selection (e.g., [40]).
Nevertheless, the available features are often built into the
system, and the user’s goal is to efficiently explore that fea-
ture space and label examples. By identifying and training
new features to extend the feature space using systems such
as Flock, these tools could be made even more effective.

Crowdsourcing and Machine Learning
Artificial intelligence techniques have largely been applied to
optimize crowdsourcing efforts. Algorithms such as expecta-
tion maximization enable better estimates of worker quality
and improved aggregation of responses (e.g., [8], [21], [47]).
Other approaches construct behavioral models to predict fu-
ture performance [39] or estimate task appropriateness [38].

For instance, crowds can be directly integrated into the learn-
ing process by focusing on specific questions or features
posed by an algorithm (i.e. active learning). Even if the
crowd lacks the expertise to answer the high level prediction
task, they can effectively label features, or answer questions
that help algorithms answer it (e.g., [32, 34]). In computer
vision, supervised learning approaches have been applied to
object classification by asking crowd workers questions to
reduce label uncertainty [6], or by highlighting portions of
an image corresponding to a given annotation [45]. Where
these active learning systems seek to optimize algorithm per-
formance within a pre-specified feature space, Flock tries to
actively learn the feature space itself, by exploring and gener-
ating new features that can help when it is performing poorly.

Alternatively, crowdsourcing can augment AI by performing
tasks that are difficult for machines to handle alone. Large
numbers of labeled examples can be generated on-demand
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(e.g., [9, 24]); the crowd can even be asked to find difficult
examples that tend to be misclassified (e.g., [4]). Apart from
labeling examples, crowds can group sets of examples (with
categories later automatically inferred [16]). They can even
directly identify and label potential features [25]. In both
cases, these approaches have been shown to be more effec-
tive than directly asking the crowd for the desired categories.
Flock demonstrates how to integrate both human features and
machine features intelligently into a joint classifier.

Drawing on research in machine learning and crowdsourc-
ing, Flock is an attempt at designing an end-to-end system
that generates models consisting of both human-generated,
as well as machine-generated features. It utilizes the crowd
to define and populate the feature space, then generates a hy-
brid human-machine model. By identifying weak areas and
then learning new features, these models can then iteratively
improve themselves.

FLOCK
By leveraging the complementary strengths of the crowd in
exploring features and machine learning algorithms in ag-
gregating these features, we can prototype and develop hy-
brid human-machine learning models that improve on exist-
ing methods. Flock, a platform that allows users to develop
these hybrid models starting from a written description of the
problem, instantiates this approach.

The user workflow has three main components (Figure 2):

• uploading training and test data, along with class labels and
any pre-computed machine features
• launching crowdsourcing tasks to nominate features

through paired example comparison and suggestion aggre-
gation, then collecting crowd labels for the new features
• training a hybrid crowd-machine classifier, looping to fo-

cus new crowd features on areas where performance is poor

Creating a hybrid classifier
Flock is aimed at end users who have a basic understanding of
machine learning. Users begin a new project by defining their
prediction task in words (Figure 2a). For example: “Is this
Wikipedia article a good article (GA-grade), or bad article (C-
grade)?” The user then uploads a file containing training and
test examples, as well as their classification labels. Users can
add their own machine-generated features (e.g., the number
of editors) as columns in this file. Flock can automatically
generate some additional features, including n-grams for text
or those of a randomized PCA in RGB space for images.

The user triggers the learning procedure by choosing the
classifier type: Flock currently supports decision trees, lo-
gistic regression and random forests. If the feature vector
is high-dimensional, as with automatically-generated n-gram
features, Flock recommends a linear model such as logistic
regression. When the user is ready, Flock asks the crowd
on the CrowdFlower microtasking market [1] to generate and
aggregate features that can help classify their dataset. For
example, suggestions such as “broken down into organized
sections” and “thorough and well-organized” are aggregated
into a feature that asks, “Is this article well-organized or

structured?” Simultaneously, Flock collects gold standard
(ground truth) feature labels for each of these possible fea-
tures. Once the crowd has completed this task, Flock shares
the nominated features with the user (Figure 2b). The user
chooses which features they want to keep, and can add ideas
of their own. Flock then launches crowdsourced feature la-
beling tasks where workers assign a value to each training
and test example across the new features.

Flock now trains the hybrid classifier using available machine
features and crowd features on the training data (Figure 2c),
using cross-validation to prevent overfitting. If the model is a
decision tree, internal nodes may be either machine features
or crowd features. Flock shows the tree to the user and sug-
gests improvements by highlighting any leaf nodes that are
impure and misclassify more than a threshold (2.5%) of all
training examples. If a random forest model is used, Flock
trains many hybrid decision trees on random subsets of the
input data, then produces the averaged “forest” classifier and
highlights commonly impure nodes in the trees inside the for-
est. If a logistic regression model is used, Flock first trains a
decision tree on crowd features only to partition the input data
into more coherent subsets, then trains parallel logistic regres-
sion classifiers for each leaf nodes at the bottom of the tree us-
ing machine features and that partition of training data. Flock
highlights any leaf classifiers that perform poorly as possi-
ble candidates for additional features in the partition. While
Flock currently only supports binary classification, this ap-
proach can also be extended to support multi-class or regres-
sion problems.

The user can then improve the initial learned models by
adding targeted crowd features to weak parts of the classi-
fier. The user can choose any node, including the ones that
Flock highlighted earlier as impure, and expand that part of
the classifier with new crowd features. When this happens,
Flock’s process loops and the system launches a new set of
crowd tasks to nominate new features on the subset of the
data that belongs to the selected node.

At each step, Flock trains multiple models with different fea-
ture subsets. It does so to show the user the performance of
multiple prediction methods on the test set. These models in-
clude Crowd prediction (a baseline asking workers directly
to guess the correct label for the example), ML with off-the-
shelf (the chosen machine learning model using only out-of-
the-box features such as n-grams), ML with crowd (the cho-
sen machine learning model using only crowd features), or
Hybrid (the full Flock model using both machine and crowd
features). This also allows end-users to decide whether the
performance improvement of a hybrid model is worth the ad-
ditional time and cost associated with crowdsourcing.

To enable this workflow in Flock, we must (1) generate high-
quality features, (2) gather feature labels for those features,
and (3) train hybrid machine-crowd models. Next, we expand
upon Flock’s approach to solving each problem.

Nominating features with analogical encoding
Crowdsourcing can help discover and test a large number of
potential features: more eyes on the prediction task can min-
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Figure 2. Workflow: (a) Users define the prediction task and provide example data. (b) Flock then automatically gathers features, combining them with
machine-provided features if the user provided them. (c) Flock then allows users to visualize the features and results and compare the performance of
the different models (e.g., human guessing, human features, machine features, a hybrid model).

Figure 3. Crowd workers generate feature nominations in Flock by com-
paring two examples, predicting which example is in each class, and ex-
plaining how it is possible to tell them apart.

imize functional fixedness and surface counterintuitive fea-
tures. Prior work suggests that the crowd may be able to
generate features that can differentiate classes of input: pre-
viously, crowds have labeled training data for learning algo-
rithms [24, 43], discovered classes of input that a classifier
has never seen and tends to misclassify [4], brainstormed in
creative settings (e.g., designing chairs [49]), extracted high-
level concepts from unstructured data [3, 7, 23], and sug-
gested features to classify images [25]. Querying the crowd
also has the added benefit of nominated features being easily
interpretable (e.g., “Does this painting tend to hide peoples’
faces in shadow?”), in contrast to automatic but opaque fea-
tures by computer vision algorithms such as SIFT [30].

In principle, any task that asks the crowd for predictive fea-
tures could suffice here. Unfortunately, asking the crowd to
generate features directly from examples often elicits poor re-
sponses — crowds are likely to be unfamiliar with the prob-
lem domain and generate surface-level features. For example,
when presented with the task of deciding whether a joke will
have popular appeal, the crowd gravitated towards responses
such as “it makes me laugh” or “it depends on the person”.

Previous research on analogical encoding has found that
when considering single examples, people tend to focus on

surface-level details, but when they compare examples, they
focus on deeper structural characteristics [14]. So, instead of
asking the crowd to deduce relevant features from a task de-
scription, Flock asks them to induce features from contrasting
examples. Crowds can extract schemas from examples [48],
and these suggestions (e.g., factors to consider when buying a
camera) tend to exhibit long-tail distributions — while there
is high overlap for a few dimensions, individual workers also
suggest a large number of alternatives [23]. We hypothesize
that eliciting features through contrasting examples will allow
crowds to produce predictive features even when they have
minimal domain expertise.

Flock first gathers feature suggestions from the crowd by gen-
erating crowdsourcing tasks on CrowdFlower. These tasks,
which are automatically generated based the example type
(text, image, or web page), show workers a random input
from the set of positive training examples, and another ran-
dom input from the set of negative training examples (Figure
3). However, the class labels are hidden from the worker.
Workers are first asked to guess which of the two examples
belongs to each class (e.g. matching paintings to Impression-
ist artists with similar styles). They are then asked to describe
in free text how these examples differ. Typically, each ex-
planation focuses on a single dimension along which the two
examples differ. In early iterations, we showed the label to
the workers and asked them for a reason directly, but hiding
the label led them to engage in deeper reasoning about the
differences between the examples [20]. Flock launches 100
comparison tasks with three workers each per dataset, result-
ing in 300 nominated features for about six cents per label
($20 total).

Next, Flock must aggregate this large number of free-text
suggestions into a small set of potential features to show the
user. The features have considerable overlap, and manual cat-
egorization suggested that the 300 nominations typically clus-
tered into roughly 50 features. So, Flock clusters the sugges-
tions and asks the crowd to generate an exemplar feature for
each cluster (Table 3). First, the system splits each response
into multiple suggestions (e.g. by sentence, newlines, and
conjunctions such as “and”). The system then performs k-
means clustering (k = 50) using tf-idf weighted bigram text
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features. With these clusters in hand, Flock launches another
task to CrowdFlower showing workers one cluster at a time
and asking them to summarize each into a single represen-
tative question (or feature) that has a yes or no answer (e.g.,
“Is this person shifting their eyes a lot?”). Three candidate
features are generated for each cluster.

A subsequent task then asks crowd workers to vote on the best
of these three features, and label five examples using that fea-
ture in order to bootstrap the gold standard questions [28] for
Flock’s subsequent feature-labeling tasks. Question rewriting
costs 5 cents per question, and each vote and five example
labels costs 4 cents, for a total of about $15 to generate 50
features. CrowdFlower’s adaptive majority voting algorithm
(similar to Get Another Label [41]) aggregates the votes to
decide on the correct feature label.

Gathering feature labels
After the crowd-generated features are returned, a user can
edit them, filter them to remove ones they don’t like or re-
duce cost, and add any new features that occur to them. They
then launch the feature labeling process, which crowdsources
labels for each of these user-validated features.

Flock spawns a CrowdFlower task for each feature to gather
labels for that feature on the training and test examples. Each
task shows workers one example input and asks them to pick
a label for each feature (e.g., does this painting contain flow-
ers?). Three workers vote on each feature label, for one cent
each, and CrowdFlower’s majority voting decides on the cor-
rect label.

Hybrid machine-crowd learners
When the feature labels are complete, Flock is ready to train
a hybrid classifier (in addition to training other models such
as ML with off-the-shelf so that they can be compared using
the Flock user interface). The initial hybrid model begins by
training using k-fold cross-validation on any pre-engineered
machine features as well as any crowd-generated features.
The exact form of hybridization depends on the user’s choice
of machine learning algorithm. Decision trees have access to
both crowd and machine features, so nodes on the tree may be
either a crowd feature or a machine feature. Random forests
work similarly, aggregating many decision trees built on sam-
ples from the training data. A simple approach to hybridiza-
tion with logistic regression would be to extend the crowd’s
features with the feature vector of machine features. How-
ever, we may be able to do better by using crowd features
to partition the space so that previously ineffective machine
features are now effective in one or more subregions of the
space. So, the hybridized logistic regression first trains a de-
cision tree at the top level using crowd features, then trains
separate logistic regression classifiers as leaf nodes using only
machine features. This approach tends to perform at least
as well as simple logistic regression. Other linear classifiers
(e.g., SVMs) could be added to Flock similarly.

Flock also enables the crowd to selectively supplement weak
regions of the classifier. For example, crowds can be used
to dynamically extend decision trees at nodes with high im-
purity, where the decision tree fails to correctly classify its

examples. Flock can then ask the crowd to generate new
features for examples at that node, providing a constrained
space for brainstorming as these examples are already simi-
lar in some aspects. These features can then be used to grow
a new subtree at that node, improving overall classification
accuracy.

To do this, the model-building loops automatically as long
as there exist impure nodes that misclassify large numbers of
training examples. By default, one decision tree leaf node
misclassifying 2.5% of all training examples triggers another
round of targeted crowd feature generation. With random
forests, we average the number of misclassified examples for
each leaf node across all trees in the forest and use a sim-
ilar filter. With logistic regression, Flock again triggers on
leaf-node logistic regression models within the tree that are
performing poorly. This process loops until either there exist
no more impure nodes, or adding additional features does not
improve the previous impure node.

This process can also be iterative and driven by user input.
With automatic improvement turned off, Flock’s interface
highlights impure nodes that the user might consider extend-
ing with additional crowd features (Figure 4). When the user
chooses a part of the model to improve, the crowd loops again
through the process to perform a more targeted brainstorm on
just training examples in the poorly-performing region.

Flock then allows any decision tree to add the new features
as children of the selected subtree or node. (In the case of
hybridized logistic regression, the new crowd features fur-
ther partition the space and Flock trains new classifiers within
the selected region.) Doing so ensures that the extra cost of
generating these labels is constrained to inputs that need the
help. For example, a user may start by identifying a few
extractable features to differentiate good Wikipedia articles
from mediocre ones (e.g. the page has missing citations, short
sections, or no section headers). While a decision tree built
on this algorithm classifies many of the examples well, it per-
forms poorly on examples where none of the visual or struc-
tural red flags are triggered. Flock then provides only these
difficult examples to the crowd, focusing the crowd’s feature
generation on a subset of pages where the heading structure
is fine and the pages are of reasonable length to generate fea-
tures like whether the article’s introduction is strong.

EVALUATION
Flock’s main thesis is that crowds can rapidly produce high-
quality classifiers in tandem with machine learning tech-
niques. In this section, we test this thesis by comparing
Flock’s predictions to those of machines across prediction
tasks that require domain expertise, predict popularity and de-
tect deceit. In particular, how effective are crowds at feature
nomination? Does using crowd-nominated features perform
better than other approaches such as direct prediction by the
crowd? And finally, can crowd and machine features be com-
bined to create effective hybrid crowd-machine learners?

Method
To understand the effectiveness of human-generated features
and features generated by hybrid human-machine systems,
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Dataset # Examples Purpose
Accuracy (ROC AUC)

Crowd Prediction ML w/ off-the-shelf ML w/ engineered ML w/ crowd Hybrid

Paintings 200 Predict expertise 0.64 (0.64) 0.69 (0.78) - 0.74 (0.74) 0.77 (0.83)
Fake Reviews 200 Identify deception 0.65 (0.65) 0.87 (0.93) - 0.72 (0.73) 0.92 (0.96)
Wikipedia 400 Evaluate quality 0.78 (0.78) 0.72 (0.72) 0.77 (0.77) 0.78 (0.78) 0.84 (0.84)
Jokes 200 Estimate popularity 0.58 (0.58) 0.56 (0.59) - 0.63 (0.64) 0.65 (0.64)
StackExchange 200 Predict behavior 0.60 (0.60) 0.57 (0.57) 0.62 (0.62) 0.65 (0.65) 0.71 (0.71)
Lying 200 Identify deception 0.53 (0.53) - - 0.61 (0.61) -

Table 1. A performance comparison of human and machine-learning-based approaches to different prediction tasks. Aggregating crowd-nominated
features using machine learning consistently outperforms the crowd’s direct predictions, and hybrid crowd-machine systems perform better than either
crowd-only or machine-only models (unless either model was poor to begin with).

Figure 4. Users can augment weaker parts of the tree by requesting
additional human features at specific nodes (a, highlighted). Flock will
then automatically generate a new subtree based on these new features
(b, highlighted).

we evaluated Flock’s crowd feature generation against direct
crowd classifications, off-the-shelf machine learning features,
engineered features and a hybrid model that includes both
crowd features and machine features (for a total of five condi-
tions). For breadth, similar to related work (e.g. [7]), we used
six different problem domains.

The problem domains encompass a large range of possible
prediction tasks:

• PAINTINGS — differentiating between impressionist paint-
ings by Claude Monet and Alfred Sisley. These painters are
often confused due to similar styles. This task represents a
learning goal that typically requires domain expertise.
• REVIEWS — telling honest from deceptive hotel reviews

[31]. The goal is to identify subtle textual signals of hon-
esty or deception.
• WIKIPEDIA — telling “good” and “C-grade” Wikipedia

articles apart. This task requires domain expertise tanta-
mount to that of an experienced Wikipedia editor.
• JOKES — identifying jokes that will have popular appeal.

This task was chosen for its similarity to information cas-
cade and popularity tasks in networks.
• STACKEXCHANGE — guessing which answer a question

asker would pick as “best”.
• LYING — discerning videos of people telling the truth or

lying. Here, we try to identify subtle behavioral cues.

In each instance, we generated balanced datasets of at least
200 examples (e.g. for paintings, half were by Monet, and
half by Sisley). In other words, random guessing would re-
sult in 50% accuracy. For PAINTINGS, images of Monet’s
and Sisley’s paintings were obtained from claudemonet-
gallery.org and alfredsisley.org respectively. REVIEWS con-
sisted of a publicly available dataset of truthful and deceptive
hotel reviews [31]. For WIKIPEDIA, articles were randomly
sampled from a list of all Good Articles and all C-grade ar-
ticles. JOKES were sampled from Reddit’s /r/AskReddit joke
threads — jokes with popular appeal were defined as those
where the proportion of up-votes was in the upper quartile
of the distribution, and those without had a proportion of
up-votes in the lower quartile. All jokes received at least
ten votes. Questions and answers for STACKEXCHANGE
were randomly sampled from the set of all questions with at
least two answers and a selected “best” answer on StackEx-
change’s English Language & Usage community. Finally, for
LYING, we sampled claims from YouTube videos of people
playing “two truths and one lie tag”, a game in which they tell
truths and lies about themselves and the viewer must guess
which is which.

In one baseline condition, Crowd Prediction, the crowd is
directly asked the prediction question. Three independent
workers were directly asked the prediction problem for each
example, with CrowdFlower’s adaptive majority voting al-
gorithm deciding on the eventual class label. These direct
crowd predictions appear to be robust; for example, predic-
tion performance for REVIEWS is slightly better than that de-
scribed in previous work [31]. One machine learning condi-
tion, ML with Off-the-shelf, used features that did not require
any programming. These consisted of logistic regression on
text bigrams for the problems with text content (REVIEWS,
WIKIPEDIA, JOKES, and STACKEXCHANGE), and using a
randomized PCA model on RGB space for the image pre-
diction task (PAINTINGS). A third condition, ML with Engi-
neered, focused on features that a domain expert might ex-
tract. For WIKIPEDIA and STACKEXCHANGE, nine features
were extracted by the authors, and random forests used for the
prediction. For WIKIPEDIA, these features include the struc-
tural features extracted in previous work (e.g., infoboxes) [5].
For STACKEXCHANGE, these features are similar to those
that were most predictive in a study of a question’s long-
lasting value (e.g., number of comments, user reputation) [2].
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Figure 5. Mean classifier performance with random subsets of features
gathered for each prediction task. As more features are collected, the
overall performance of the classifier generally improves. Nevertheless,
noisy features can impact performance.

In the ML with Crowd condition, Flock gathered and aggre-
gated suggestions to generate crowd-nominated features. A
final prediction was made by using machine learning to learn
the best combination of these features. From the set of nom-
inated features, ten features were chosen at random for label-
ing. Three different workers labeled each feature for each
example, with CrowdFlower’s adaptive majority voting al-
gorithm determining the final feature value. Random forests
(n = 100) were used to aggregate these nominated features,
and backward feature selection performed afterward.

A final condition, Hybrid, combines crowd-nominated fea-
tures (the same features as in the ML with Crowd condition)
and machine features (user-engineered or off-the-shelf such
as n-grams). By default, a decision tree model was used,
but when the total number of features was large (≥40), we
tested both simple logistic regression, which combines both
crowd-nominated and machine features into a single feature
vector, and hybridized logistic regression, which trains a de-
cision tree at the top level using crowd features, then trains
separate logistic regression classifiers as leaf nodes using only
machine features.

In all conditions, performance was evaluated using leave-one-
out cross-validation.

Results
For each domain on average, 51 workers generated 334 fea-
ture nominations ($35 for nomination and aggregation in to-
tal), and 263 workers generated 1200 labels for each of 10
features during feature labeling ($12 per feature). Similar to
prior work, we find that these feature nominations followed a
long-tail distribution. A summary of results can be found in
Table 1. While people performed essentially at chance in try-
ing to detect lies on YouTube, ML with Crowd was able to de-
tect lying 61% of the time. For other tasks, results were even
stronger: for example, Hybrid was 92% accurate at detect-
ing fake reviews, 84% accurate and judging Wikipedia page
quality, and 77% accurate at differentiating Monet paintings
from Sisley.

Aggregating crowd-nominated features outperforms di-
rect predictions from the crowd, off-the-shelf features,
and engineered features. In all datasets, aggregating crowd-
nominated features (ML with Crowd) consistently outper-
forms directly asking the prediction task (Crowd Prediction),
with an average improvement of 6% on an absolute scale.
People effectively had access to the same features in both
cases, but a machine learning architecture was more effec-
tive at combining the evidence to make a decision. Further,

Dataset Top Correlated Features
Paintings A Monet (i) contains flowers (0.31), (ii) lilies (0.24),

(iii) is abstract (0.24), (iv) does not contain people
(0.23), and (v) uses broad brushstrokes (0.22).

Reviews An honest review mentions (i) negative aspects of
the stay (0.43), (ii) the prices (0.29), (iii) local activ-
ities (0.24), (iv) things only a guest would know about
(0.20), and (v) getting something for free (0.17).

Wikipedia A Good Article (GA) has (i) a strong introduc-
tion (0.52), (ii) attractive images (0.39), (iii) is well-
structured (0.36), (iv) discusses the topic in detail
(0.34), and (v) is not too short to sufficiently cover the
topic (0.32).

Jokes A popular joke (i) uses repetition (0.21), (ii) is long
(0.15), (iii) is a “classic” joke (0.12), (iv) does not use
toilet humor (0.10), and (v) is not offensive (0.09).

StackExchange A selected answer (i) is well-written (0.20),
(ii) has references (0.19), (iii) uses examples (0.18),
(iv) makes logical sense (0.18), and (v) is detailed
(0.16).

Lying When lying, people (i) shift their eyes (0.14), (ii) keep
sentences short (0.13), (iii) look confident (0.12),
(iv) do not mention details (0.10), (v) and do not use
gestures (0.09).

Table 2. For each dataset, the crowd-nominated features that were most
correlated with the classification labels for each dataset (correlations in
parentheses).

we find that this approach can exceed the performance of off-
the-shelf classifiers, or even models with engineered features.

These nominated features were fairly informative and di-
verse: the mean correlation (Pearson’s r) of nominated fea-
tures with the actual labels was 0.15 (σ=0.09), suggesting that
individual features are not strongly predictive but still carry
some signal; a mean pairwise correlation between features of
0.19 (σ=0.12) suggests that most nominated features were not
restatements of similar concepts. The median maximum cor-
relation of any feature with the crowd predictions was 0.23,
suggesting that crowds were not basing their decisions on any
single feature. The only exception was WIKIPEDIA, where
having a strong introduction was highly correlated (0.49).

Table 2 shows the most correlated features extracted by the
crowd for each task. While some features appear subjective
(e.g. abstractness for PAINTINGS or a strong introduction for
WIKIPEDIA), they nonetheless carry important information.
We coded these features to identify how many might be ex-
tractable through automated techniques, meaning that off-the-
shelf classifiers exist (e.g., sentiment detection) or a simple
algorithm can be written to do so (e.g., if an XPath selector
could extract the number of headings in a web page). We
find that a mean of 25% are easily extracted with machines,
suggesting a straightforward approach to automating the col-
lection of some of these features. Future work could study
the effectiveness of using only machine-extractable features.

To get a sense of the number of features a user should gather,
we plotted mean classifier performance on random subsets
of features of different sizes. As Figure 5 shows, perfor-
mance generally increases with the number of features, al-
though substantial improvements tend to only be seen with
four or more features gathered. Nevertheless, feature selec-
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Suggestion cluster Crowd-generated features
looks away from the camera several
times · looks away from the camera
· look away from the camera or use
her hands · glances away from the
camera slightly (+4 additional)

Does she look away from the cam-
era too much? · Is there too much
breaking of eye contact? · Why
does she look away like shes trying
to get someone elses opinion?

her eyes are shifty in the second
video · Her eyes were too shifty in
the second video · is shifty in the
second video (+3 additional)

Do the eyes shift round causing sus-
picion of lying? · Is this person
shifting their eyes a lot? · Is it un-
natural?

Table 3. Crowds are able to generate features by summarizing clusters
of suggestions into representative features (worded as yes/no questions),
and then voting on them (feature with the most votes bolded).

Figure 6. The decision tree used to differentiate “good” (green) and
“C-grade” articles (red) on Wikipedia, where machine-extractable fea-
tures (nodes with gears) were augmented with crowd-nominated fea-
tures (nodes with people).

tion is important, especially for datasets where features may
be noisier or uninformative, and using all nominated features
can result in diminished performance (e.g., JOKES).

When comparing classifiers that use crowd-nominated fea-
tures with those that use engineered features, we note that
more time and effort could always have been spent to increase
the number of available crowd-nominated, or engineered fea-
tures. Nevertheless, prior work suggests that the engineered
features we use are among the most predictive [5, 2], suggest-
ing that these engineered features produce a classifier in the
same performance neighborhood as one that would be more
carefully optimized. Figure 5 also suggests that a relatively
small number of crowd features is required to achieve reason-
able performance as well.

In other words, Flock can help build classification systems
that perform roughly as well or better than systems with en-
gineered features with significantly less developer effort, and
no programming involved. For example, Flock could be used
to prototype and rapidly deploy classification systems that
initially are entirely powered by the crowd, with machine-
extracted features gradually replacing the crowd over time.

Crowds were able to generate predictive features, but
were poor at estimating their features’ predictiveness. The
feature nomination pipeline generated an average of about 42
potential features (out of 334 unique suggestions) across the
100 examples. k-means clustering identified consistent clus-
ters of suggestions, and crowds were able to extract represen-
tative features from these (see Table 3 for examples). Com-

paring the extracted features with a manually annotated set
on the LYING dataset, we found that 80% of features sug-
gested at least five times were identified by k-means and gen-
erated by the crowd. Accurately extracting rarer, but more
informative features remains future work. Surprisingly, the
crowd was also able to identify features that suggested spe-
cialized knowledge — for instance, correctly pointing out that
the presence of flowers (or lilies) in a painting are indicative
of a painting by Monet.

These crowd-nominated features can be gathered reasonably
quickly — nomination tasks that asked for 3 independent
feature suggestions on 100 examples were 90% complete in
roughly nine hours, and finished entirely in 12.5 hours on av-
erage. Labeling these features is significantly quicker: the
mean time to 90% completion was 1.5 hours, and labels for all
200 examples were complete in 2.8 hours on average (σ=1.6).

Our results showing that ML with Crowd outperforms Crowd
Prediction suggests that crowds do not estimate the impor-
tance of the features they generate very well, underlining the
importance of machine weighting. To better understand this,
for each task, we asked ten workers to independently rank the
importance of the ten crowd-nominated features, and com-
pared this ranking with that generated by the absolute corre-
lation of each feature with the provided labels. A Kendall’s
tau test reveals a coefficient of between -0.184 and 0.156 (a
value of 1 corresponds to perfect agreement, 0 to indepen-
dence in the rankings, and -1 to a completely reversed rank-
ing). These results suggest that people’s rankings of features
are almost entirely uncorrelated with the true importance of
these features with respect to the task. In fact, this coefficient
was exactly zero in the case of STACKEXCHANGE. These
ranking differences can be striking: for instance, repetitive
structure was the strongest feature in JOKES but ranked on
average as the least important feature. This experience rein-
forces the idea that Flock should balance popular suggestions
with outlier but potentially very informative suggestions: a
classic exploration vs. exploitation tradeoff.

Not only are workers individually poor at predicting feature
importance, but the number of workers that suggest each fea-
ture is a weak indicator of relative importance. Here, τ ranges
between -0.244 and 0.556. When τ is larger, semi-random ex-
ploration of the feature space weighted by the number of sug-
gestions for each feature would reasonably discover impor-
tant features; when τ is small, it would be a poor approach.
These results demonstrate the strength of machine learning
algorithms in revealing “surprising” features — features that
people would not expect to be important.

Combining crowds and machines is better than using ei-
ther in isolation. On average, hybrid systems that use both
crowd-nominated and machine-extracted features improved
upon the crowd-only approach by 7%, and on machine-only
approaches by 8% (on an absolute scale). While crowd-
nominated features are useful and potentially provide more
information than machine-generated features, crowds are not
always consistent in how they label features [6], and are thus
less reliable than completely automatic approaches. By com-
bining these two types of features, we can then take advan-

8



tage of the strengths of both. For example, a decision-tree ap-
proach improves overall accuracy in WIKIPEDIA and STACK-
EXCHANGE by 7% and 9%, respectively, in comparison to
using engineered features, and 6% in comparison to using
crowd-nominated features. Figure 6 shows the tree generated
by this approach.

The crowd helped most when a Wikipedia page does not
have obvious visual or structural indications of needing ad-
ditional work (e.g. missing citations or very short sections).
In these cases, the decision tree often predicts incorrectly, but
the crowd focusing on these examples nominates features re-
lated to the content of the article (e.g. level of detail) to help
differentiate. If we examine the individual nodes where sub-
trees were added, we find the performance increases here are
substantial — 12% in the case of WIKIPEDIA. For differ-
ent parts of the tree, crowds nominated different features, and
again, different features turn out to be important for each sub-
tree. For example, covering a topic broadly and in detail was
important when an article contained broken links, but article
complexity and text relevance were important when it did not.

In cases when the total number of features is large (e.g.,
when using n-gram features), performance using either lo-
gistic regression or hybridized logistic regression was com-
parable: for REVIEWS, accuracy using the first approach is
0.92 (AUC=0.96) and 0.90 (AUC=0.90) using the second; for
JOKES, the resulting accuracies were 0.65 (AUC=0.64) and
0.63 (AUC=0.64) respectively. Overall, improvements are
substantial: 5% over crowd-nominated features for PAINT-
INGS and 5% over off-the-shelf features for REVIEWS, the
next-best performing method for each.

Scale
It may not be realistic to pay workers to label several features
for each item to be classified, especially as the number of in-
puts grows. We thus wanted to see whether we could learn
individual classifiers for features that the crowd had nomi-
nated, using off-the-shelf features. Such an approach would
enable Flock to scale to inputs of arbitrary size with no ad-
ditional crowd input required, after gathering training data
(or feature labels) for a small subset of examples. We ex-
panded the WIKIPEDIA dataset to 1000 examples, instead of
400 previously. For each feature, we trained a bigram classi-
fier on random subsets of 200 labeled examples, and predicted
the feature value for the other 800 examples. Across all ten
human-nominated features, we obtained a mean accuracy of
0.84 (mean AUC=0.61).

Using these predicted feature values, we again attempted the
original prediction task. A model using only these predicted
features had an accuracy of 0.74 (AUC=0.74), and a hybrid
model that combined these predicted features with off-the-
shelf features had an accuracy of 0.79 (AUC=0.79). Only the
original Hybrid condition with crowd-provided feature values
attained better performance. Future work could look at more
expressive off-the-shelf classifiers to further improve perfor-
mance; for some features (e.g., if an article contained rep-
utable references), the bi-gram classifier performed at chance.

Limitations
While our results suggest that our approach generally im-
proves on existing methods, there are several limitations to
the system. Like machine-only classifiers, performance suf-
fers when class membership is potentially inconsistent (i.e. in
cases where extrinsic factors strongly influence class mem-
bership, e.g., JOKES, where a joke may only become popular
because it was the first to be posted).

And in some cases such as REVIEWS, a straightforward ap-
plication of machine learning approaches already performs
reasonably well. Although crowds can improve on the per-
formance of these systems (e.g. 92% accuracy using a hy-
brid system vs. 87% using only off-the-shelf features), the
tradeoff between improved performance and cost of crowd-
sourcing additional features should be considered. In the op-
posite case, where the machine-only model is poor to begin
with (e.g. JOKES), using just crowd features alone can lead
to performance comparable to a hybrid model, underlining
the importance of comparing these different approaches. In
this case, text models were unable to extract useful signals of
popular appeal, possibly because such models work best with
longer documents and a large number of examples.

Specific to Flock is its dependence on whether features can be
easily perceived and identified by a crowd worker. Even if the
crowd is poor at guessing, Flock can still perform reasonably
well if the crowd can identify differentiating characteristics
(e.g. “Does the joke use repetition?”). But while the crowd
can generate useful features, both objective and subjective,
they sometimes make suggestions that are restatements of the
problem (“This seemed more genuine” for REVIEWS), or are
too subjective (“It made me laugh” for JOKES) to be similarly
interpreted by different workers. The phrasing of the predic-
tion task is important in avoiding these degenerate features.
Also, if features are hard to come up with, the features that
do matter may not end up being captured in the first place.

We note that gathering more features does not always result in
improved performance (i.e. the curse of dimensionality). In
all cases, feature selection methods are useful in identifying
the features that truly matter.

Finally, while Flock is designed as a tool with significant au-
tomation behind it, a laboratory user study which compares
Flock with other workflows would provide insight into how it
is used in practice.

DISCUSSION
Through Flock, we can build classifiers that are both effec-
tive and interpretable. As opposed to off-the-shelf models
that use thousands of features and require significant effort
to understand, models generated by Flock use explainable
crowd-nominated features. We see several promising future
directions: in improving the feature nomination process, in
considering monetary, developer and computation costs in
combination, and in devising methods to better automate such
crowd-machine systems. Further, as Flock’s design is fairly
modular, each component (e.g., feature nomination, feature
aggregation, or learning algorithms) can be easily replaced as
more effective approaches are found.
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Improving feature nomination
To start, we consider possible improvements to Flock’s fea-
ture nomination process. Currently, examples are paired at
random, and the crowd has little guidance as to the type of
features to produce. By instead providing similar examples
to users, alignable differences between these examples can
become more salient (e.g., if one wanted users to focus on
article layout when judging Wikipedia article quality by pre-
senting two articles with similar content) [15]. Further, cur-
riculum learning suggests that providing progressively more
difficult-to-categorize training examples for training may fur-
ther improve the crowd’s ability to identify subtler features
[42].

Different interfaces may also lead to beneficial outcomes: an
input-agreement game, where users are incentivized to de-
scribe examples using keywords to each other to see if they
were presented the same example, may uncover other features
[27]. In cases where a larger number of examples can be pre-
sented simultaneously (e.g., images), complementary agree-
ment games would allow users to rapidly identify and catego-
rize examples with common characteristics [26]. For highly
specialized prediction tasks, automatically targeting groups
of workers, possibly by demographic [29], may also improve
the quality of nominated features (e.g., identifying art lovers
to build a classifier for Monet paintings).

Alternatively, exploring other approaches to feature aggrega-
tion such as tagged hierarchies [7] may lead to higher quality
features, but at higher cost. More sophisticated algorithms
could automatically identify high-level candidate features by
clustering on subsets of confused examples when it is pos-
sible to automatically generate a large number of low-level
features [33]. Pairing examples near the classifier’s decision
boundary, where the examples are currently most confused,
is also a potential approach to improving performance at sub-
nodes of a tree.

One downside to hybridized crowd-machine learning systems
is monetary cost, especially with larger datasets. In some
cases it may not be financially feasible to permanently wire
crowd feature labeling into a system. We see several ways
forward: to use Flock to prototype machine feature-driven
systems, to more intelligently utilize crowd features, or to
learn and then replace these features altogether.

In its current form, Flock could be used as a prototyping tool.
While features that the crowd nominates may not be easy to
code, our goal is to instead provide inspiration for related
machine-extractable features. This approach allows the user
to prototype features and understand their effectiveness be-
fore sinking hours into writing code to extract them.

We may also consider a system that directly integrates di-
rect crowd guesses and machine features, as collecting a
single prediction for each example is significantly cheaper
than gathering multiple features. Our initial experiments are
promising: on average, the resulting classifier performs better
than either guessing or a machine-only classifier, but worse
than the complete hybrid model. On ARTISTS, a hybrid sys-
tem combining the crowd’s direct predictions and off-the-

shelf features had an accuracy of 0.72 (AUC=0.77). Future
hybrid systems could weigh a crowd’s direct predictions more
heavily amongst other nominated features.

Alternatively, decision-theoretic models could step in to op-
timize the balance between crowd and machine features
[8, 21]. Decision trees could then be optimized for cost-
effectiveness and performance by using crowd-nominated
features deeper in the hierarchy. Multi-armed bandit strate-
gies could help balance the tradeoff between exploration
(gathering more features and labels for these features) and
exploitation (improving the quality of specific features or op-
timizing the existing set of features). Using an active learning
approach, one could model the informativeness of each crowd
feature, and selectively query the crowd for specific features
on specific examples when needed, but also have the flexibil-
ity to simply generate more features on-demand.

And while crowd-nominated features improve the perfor-
mance of machine learning systems, a natural goal would be
to eventually replace each crowd feature with its own ma-
chine learning classifier. Our analysis of the WIKIPEDIA
dataset shows promise in trying to learn classifiers that pre-
dicts crowd responses [37], assuming that crowd behavior can
be effectively encoded in the classifier’s feature space. An-
other approach could be to have the crowd recursively break
down features into simpler sub-features (e.g. “whether a
painting uses warm colors” could potentially be broken down
into multiple instances of “whether a painting contains a par-
ticular color”), until each is simple enough to be automati-
cally extracted. Alternatively, the crowd might be able to au-
thor that classifier themselves with appropriate end-user ma-
chine learning tools (e.g., [11]).

CONCLUSION
In this paper, we integrate crowdsourcing into machine learn-
ing to develop hybrid learners with crowd-nominated fea-
tures, machine-driven aggregation of these features, and tar-
geted hybrids that use both crowd and machine features. We
present Flock, a machine learning platform that allows end
users to inspect existing models, launch targeted, crowd-
driven feature generation tasks, and guide the feature aggre-
gation and selection process. In an evaluation across domains
such as quality evaluation and deception detection, these hy-
brid systems offer significantly improved performance. Hy-
brid crowd-machine learning systems may offer a route to
rapid prototyping and exploration of the feature space, even in
traditionally difficult domains. Flock suggests a future where
an end user could create a machine learning system just by ex-
plaining the prediction goal into a free-form textbox. A com-
bination of crowds and algorithms could take over from there
to collect examples, extract features, then tune and monitor a
classifier that becomes useful to the end user within hours.
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